Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Maternal bile acid transporter deficiency promotes neonatal demise.

  • Yuanyuan Zhang‎ et al.
  • Nature communications‎
  • 2015‎

Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition.


Radial glia cells are candidate stem cells of ependymoma.

  • Michael D Taylor‎ et al.
  • Cancer cell‎
  • 2005‎

Tumors of the same histologic type often comprise clinically and molecularly distinct subgroups; however, the etiology of these subgroups is unknown. Here, we report that histologically identical, but genetically distinct, ependymomas exhibit patterns of gene expression that recapitulate those of radial glia cells in the corresponding region of the central nervous system. Cancer stem cells isolated from ependymomas displayed a radial glia phenotype and formed tumors when orthotopically transplanted in mice. These findings identify restricted populations of radial glia cells as candidate stem cells of the different subgroups of ependymoma, and they support a general hypothesis that subgroups of the same histologic tumor type are generated by different populations of progenitor cells in the tissues of origin.


The carboxy terminus causes interfacial assembly of oleate hydratase on a membrane bilayer.

  • Christopher D Radka‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


An unexpected protein interaction promotes drug resistance in leukemia.

  • Aaron Pitre‎ et al.
  • Nature communications‎
  • 2017‎

The overall survival of patients with acute myeloid leukemia (AML) is poor and identification of new disease-related therapeutic targets remains a major goal for this disease. Here we show that expression of MPP1, a PDZ-domain-containing protein, highly correlated with ABCC4 in AML, is associated with worse overall survival in AML. Murine hematopoietic progenitor cells overexpressing MPP1 acquired the ability to serially replate in methylcellulose culture, a property crucially dependent upon ABCC4. The highly conserved PDZ-binding motif of ABCC4 is required for ABCC4 and MPP1 to form a protein complex, which increased ABCC4 membrane localization and retention, to enhance drug resistance. Specific disruption of this protein complex, either genetically or chemically, removed ABCC4 from the plasma membrane, increased drug sensitivity, and abrogated MPP1-dependent hematopoietic progenitor cell replating in methylcellulose. High-throughput screening identified Antimycin A as a small molecule that disrupted the ABCC4-MPP1 protein complex and reversed drug resistance in AML cell lines and in primary patient AML cells. In all, targeting the ABCC4-MPP1 protein complex can lead to new therapies to improve treatment outcome of AML, a disease where the long-term prognosis is poor.


Preclinical models for neuroblastoma: establishing a baseline for treatment.

  • Tal Teitz‎ et al.
  • PloS one‎
  • 2011‎

Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system.


Structural analysis of the full-length human LRRK2.

  • Alexander Myasnikov‎ et al.
  • Cell‎
  • 2021‎

Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.


Acquisition of Cholangiocarcinoma Traits during Advanced Hepatocellular Carcinoma Development in Mice.

  • Liyuan Li‎ et al.
  • The American journal of pathology‎
  • 2018‎

Past studies have identified hepatic tumors with mixed hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) characteristics that have a more aggressive behavior and a poorer prognosis than classic HCC. Whether this pathologic heterogeneity is due to a cell of origin of bipotent liver progenitors or the plasticity of cellular constituents comprising these tumors remains debated. In this study, we investigated the potential acquisition of CC-like traits during advanced development of HCC in mice. Primary and rare high-grade HCC developed in a genetic mouse model. A mouse model of highly efficient HCC invasion and metastasis by orthotopic transplantation of liver cancer organoids propagated from primary tumors in the genetic model was further developed. Invasive/metastatic tumors developed in both models closely recapitulated advanced human HCC and displayed a striking acquisition of CC-related pathologic and molecular features, which was absent in the primary HCC tumors. Our study directly demonstrates the pathologic evolution of HCC during advanced tumor development, providing the first evidence that tumors with mixed HCC and CC features, or at least a subset of these tumors, represent a more advanced developmental stage of HCC. Finally, liver cancer organoid-generated high-grade tumors exhibited significantly increased extracellular vesicle secretion, suggesting that identifying tumor-specific extracellular vesicle proteins in plasma may be a promising tool for liver cancer detection.


Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A.

  • Aaron Pitre‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21(Cip1) and p27(Kip1). Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21(Cip1), and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.


A perivascular niche for brain tumor stem cells.

  • Christopher Calabrese‎ et al.
  • Cancer cell‎
  • 2007‎

Cancers are believed to arise from cancer stem cells (CSCs), but it is not known if these cells remain dependent upon the niche microenvironments that regulate normal stem cells. We show that endothelial cells interact closely with self-renewing brain tumor cells and secrete factors that maintain these cells in a stem cell-like state. Increasing the number of endothelial cells or blood vessels in orthotopic brain tumor xenografts expanded the fraction of self-renewing cells and accelerated the initiation and growth of tumors. Conversely, depletion of blood vessels from xenografts ablated self-renewing cells from tumors and arrested tumor growth. We propose that brain CSCs are maintained within vascular niches that are important targets for therapeutic approaches.


Extracellular Signal-Regulated Kinase Signaling in CD4-Expressing Cells Inhibits Osteochondromas.

  • Marie Wehenkel‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Defects in cartilage homeostasis can give rise to various skeletal disorders including osteochondromas. Osteochondromas are benign bone tumors caused by excess accumulation of chondrocytes, the main cell type of cartilage. The extracellular signal-regulated kinase (ERK) pathway is a major signaling node that functions within chondrocytes to regulate their growth and differentiation. However, it is not known whether the ERK pathway in other cell types regulates cartilage homeostasis. We show here that mice with a germline deficiency of Erk1 and a conditional deletion of Erk2 in cells that express CD4, or expressed CD4 at one point in development, unexpectedly developed bone deformities. The bone lesions were due to neoplastic outgrowths of chondrocytes and disordered growth plates, similar to tumors observed in the human disease, osteochondromatosis. Chondrocyte accumulation was not due to deletion of Erk2 in the T cells. Rather, CD4cre was expressed in cell types other than T cells, including a small fraction of chondrocytes. Surprisingly, the removal of T cells accelerated osteochondroma formation and enhanced disease severity. These data show for the first time that T cells impact the growth of osteochondromas and describe a novel model to study cartilage homeostasis and osteochondroma formation.


p14ARF forms meso-scale assemblies upon phase separation with NPM1.

  • Eric Gibbs‎ et al.
  • Research square‎
  • 2023‎

NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex remain elusive. Here we show that NPM1 sequesters p14ARF within phase-separated condensates, facilitating the assembly of p14ARF into a gel-like meso-scale network. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and β-strands within a partially folded N-terminal domain of p14ARF. Those hydrophobic interactions promote phase separation with NPM1, enhance nucleolar partitioning of p14ARF, restrict p14ARF and NPM1 diffusion within condensates and in nucleoli, and reduce cell viability. Our structural model provides novel insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: