Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle.

  • Theodore P Braun‎ et al.
  • PloS one‎
  • 2014‎

Cancer cachexia is a syndrome of weight loss that results from the selective depletion of skeletal muscle mass and contributes significantly to cancer morbidity and mortality. The driver of skeletal muscle atrophy in cancer cachexia is systemic inflammation arising from both the cancer and cancer treatment. While the importance of tumor derived inflammation is well described, the mechanism by which cytotoxic chemotherapy contributes to cancer cachexia is relatively unexplored. We found that the administration of chemotherapy to mice produces a rapid inflammatory response. This drives activation of the hypothalamic-pituitary-adrenal axis, which increases the circulating level of corticosterone, the predominant endogenous glucocorticoid in rodents. Additionally, chemotherapy administration results in a significant loss of skeletal muscle mass 18 hours after administration with a concurrent induction of genes involved with the ubiquitin proteasome and autophagy lysosome systems. However, in mice lacking glucocorticoid receptor expression in skeletal muscle, chemotherapy-induced muscle atrophy is completely blocked. This demonstrates that cytotoxic chemotherapy elicits significant muscle atrophy driven by the production of endogenous glucocorticoids. Further, it argues that pharmacotherapy targeting the glucocorticoid receptor, given in concert with chemotherapy, is a viable therapeutic strategy in the treatment of cancer cachexia.


sciMET-cap: High-throughput single-cell methylation analysis with a reduced sequencing burden.

  • Sonia N Acharya‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

DNA methylation is a key component of the mammalian epigenome, playing a regulatory role in development, disease, and other processes. Robust, high-throughput single-cell DNA methylation assays are now possible (sciMET); however, the genome-wide nature of DNA methylation results in a high sequencing burden per cell. Here, we leverage target enrichment with sciMET to capture sufficient information per cell for cell type assignment using substantially fewer sequence reads (sciMET-cap). Sufficient off-target coverage further enables the production of near-complete methylomes for individual cell types. We characterize sciMET-cap on human PBMCs and brain (middle frontal gyrus).


Automatically pre-screening patients for the rare disease aromatic l-amino acid decarboxylase deficiency using knowledge engineering, natural language processing, and machine learning on a large EHR population.

  • Aaron M Cohen‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2024‎

Electronic health record (EHR) data may facilitate the identification of rare diseases in patients, such as aromatic l-amino acid decarboxylase deficiency (AADCd), an autosomal recessive disease caused by pathogenic variants in the dopa decarboxylase gene. Deficiency of the AADC enzyme results in combined severe reductions in monoamine neurotransmitters: dopamine, serotonin, epinephrine, and norepinephrine. This leads to widespread neurological complications affecting motor, behavioral, and autonomic function. The goal of this study was to use EHR data to identify previously undiagnosed patients who may have AADCd without available training cases for the disease.


Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates.

  • Wilmon F Grant‎ et al.
  • PloS one‎
  • 2011‎

To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of n-3 fatty acids (FA's) and higher levels of n-6 FA's than the control diet (CTR), we found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.


Automated confidence ranked classification of randomized controlled trial articles: an aid to evidence-based medicine.

  • Aaron M Cohen‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2015‎

For many literature review tasks, including systematic review (SR) and other aspects of evidence-based medicine, it is important to know whether an article describes a randomized controlled trial (RCT). Current manual annotation is not complete or flexible enough for the SR process. In this work, highly accurate machine learning predictive models were built that include confidence predictions of whether an article is an RCT.


Virk: an active learning-based system for bootstrapping knowledge base development in the neurosciences.

  • Kyle H Ambert‎ et al.
  • Frontiers in neuroinformatics‎
  • 2013‎

The frequency and volume of newly-published scientific literature is quickly making manual maintenance of publicly-available databases of primary data unrealistic and costly. Although machine learning (ML) can be useful for developing automated approaches to identifying scientific publications containing relevant information for a database, developing such tools necessitates manually annotating an unrealistic number of documents. One approach to this problem, active learning (AL), builds classification models by iteratively identifying documents that provide the most information to a classifier. Although this approach has been shown to be effective for related problems, in the context of scientific databases curation, it falls short. We present Virk, an AL system that, while being trained, simultaneously learns a classification model and identifies documents having information of interest for a knowledge base. Our approach uses a support vector machine (SVM) classifier with input features derived from neuroscience-related publications from the primary literature. Using our approach, we were able to increase the size of the Neuron Registry, a knowledge base of neuron-related information, by a factor of 90%, a knowledge base of neuron-related information, in 3 months. Using standard biocuration methods, it would have taken between 1 and 2 years to make the same number of contributions to the Neuron Registry. Here, we describe the system pipeline in detail, and evaluate its performance against other approaches to sampling in AL.


A system for classifying disease comorbidity status from medical discharge summaries using automated hotspot and negated concept detection.

  • Kyle H Ambert‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2009‎

OBJECTIVE Free-text clinical reports serve as an important part of patient care management and clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical practice, but remain an under-used source of information for clinical and epidemiological research, as well as personalized medicine. The authors explore the challenges associated with automatically extracting information from clinical reports using their submission to the Integrating Informatics with Biology and the Bedside (i2b2) 2008 Natural Language Processing Obesity Challenge Task. DESIGN A text mining system for classifying patient comorbidity status, based on the information contained in clinical reports. The approach of the authors incorporates a variety of automated techniques, including hot-spot filtering, negated concept identification, zero-vector filtering, weighting by inverse class-frequency, and error-correcting of output codes with linear support vector machines. MEASUREMENTS Performance was evaluated in terms of the macroaveraged F1 measure. RESULTS The automated system performed well against manual expert rule-based systems, finishing fifth in the Challenge's intuitive task, and 13(th) in the textual task. CONCLUSIONS The system demonstrates that effective comorbidity status classification by an automated system is possible.


The TREC 2004 genomics track categorization task: classifying full text biomedical documents.

  • Aaron M Cohen‎ et al.
  • Journal of biomedical discovery and collaboration‎
  • 2006‎

The TREC 2004 Genomics Track focused on applying information retrieval and text mining techniques to improve the use of genomic information in biomedicine. The Genomics Track consisted of two main tasks, ad hoc retrieval and document categorization. In this paper, we describe the categorization task, which focused on the classification of full-text documents, simulating the task of curators of the Mouse Genome Informatics (MGI) system and consisting of three subtasks. One subtask of the categorization task required the triage of articles likely to have experimental evidence warranting the assignment of GO terms, while the other two subtasks were concerned with the assignment of the three top-level GO categories to each paper containing evidence for these categories.


Overview of BioCreative II gene normalization.

  • Alexander A Morgan‎ et al.
  • Genome biology‎
  • 2008‎

The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%.


Integrative analysis of drug response and clinical outcome in acute myeloid leukemia.

  • Daniel Bottomly‎ et al.
  • Cancer cell‎
  • 2022‎

Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.


Identifying main finding sentences in clinical case reports.

  • Mengqi Luo‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2020‎

Clinical case reports are the 'eyewitness reports' of medicine and provide a valuable, unique, albeit noisy and underutilized type of evidence. Generally, a case report has a single main finding that represents the reason for writing up the report in the first place. However, no one has previously created an automatic way of identifying main finding sentences in case reports. We previously created a manual corpus of main finding sentences extracted from the abstracts and full text of clinical case reports. Here, we have utilized the corpus to create a machine learning-based model that automatically predicts which sentence(s) from abstracts state the main finding. The model has been evaluated on a separate manual corpus of clinical case reports and found to have good performance. This is a step toward setting up a retrieval system in which, given one case report, one can find other case reports that report the same or very similar main findings. The code and necessary files to run the main finding model can be downloaded from https://github.com/qi29/main_ finding_recognition, released under the Apache License, Version 2.0.


P-selectin genotype is associated with the development of cancer cachexia.

  • Benjamin H L Tan‎ et al.
  • EMBO molecular medicine‎
  • 2012‎

The variable predisposition to cachexia may, in part, be due to the interaction of host genotype. We analyzed 129 single nucleotide polymorphisms (SNPs) in 80 genes for association with cachexia based on degree of weight loss (>5, >10, >15%) as well as weight loss in the presence of systemic inflammation (C-reactive protein, > 10 mg/l). 775 cancer patients were studied with a validation association study performed on an independently recruited cohort (n = 101) of cancer patients. The C allele (minor allele frequency 10.7%) of the rs6136 (SELP) SNP was found to be associated with weight loss >10% both in the discovery study (odds ratio (OR) 0.52; 95% confidence intervals (CI), 0.29-0.93; p = 0.026) and the validation study (OR 0.09, 95% CI 0.01-0.98, p = 0.035). In separate studies, induction of muscle atrophy gene expression was investigated using qPCR following either tumour-induced cachexia in rats or intra-peritoneal injection of lipopolysaccharide in mice. P-selectin was found to be significantly upregulated in muscle in both models. Identification of P-selectin as relevant in both animal models and in cachectic cancer patients supports this as a risk factor/potential mediator in cachexia.


Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system.

  • Theodore P Braun‎ et al.
  • PloS one‎
  • 2012‎

Signaling via the type 4-melanocortin receptor (MC4R) is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading. We therefore examined the relationship of fat mass and lean mass in mice lacking the type-4 melanocortin receptor (MC4RKO). We demonstrate that MC4RKO mice display increased lean body mass. Further, this is not dependent on changes in adipose mass, as MC4RKO mice possess more lean body mass than diet-induced obese (DIO) wild type mice with equivalent fat mass. To examine potential sources of the increased lean mass in MC4RKO mice, bone mass and strength were examined in MC4RKO mice. Both parameters increase with age in MC4RKO mice, which likely contributes to increases in lean body mass. We functionally characterized the increased lean mass in MC4RKO mice by examining their capacity for treadmill running. MC4R deficiency results in a decrease in exercise performance. No changes in the ratio of oxidative to glycolytic fibers were seen, however MC4RKO mice demonstrate a significantly reduced heart rate, which may underlie their impaired exercise performance. The reduced exercise capacity we report in the MC4RKO mouse has potential clinical ramifications, as efforts to control body weight in humans with melanocortin deficiency may be ineffective due to poor tolerance for physical activity.


Evaluation of patient-level retrieval from electronic health record data for a cohort discovery task.

  • Steven R Chamberlin‎ et al.
  • JAMIA open‎
  • 2020‎

Growing numbers of academic medical centers offer patient cohort discovery tools to their researchers, yet the performance of systems for this use case is not well understood. The objective of this research was to assess patient-level information retrieval methods using electronic health records for different types of cohort definition retrieval.


Myeloid lineage enhancers drive oncogene synergy in CEBPA/CSF3R mutant acute myeloid leukemia.

  • Theodore P Braun‎ et al.
  • Nature communications‎
  • 2019‎

Acute Myeloid Leukemia (AML) develops due to the acquisition of mutations from multiple functional classes. Here, we demonstrate that activating mutations in the granulocyte colony stimulating factor receptor (CSF3R), cooperate with loss of function mutations in the transcription factor CEBPA to promote acute leukemia development. The interaction between these distinct classes of mutations occurs at the level of myeloid lineage enhancers where mutant CEBPA prevents activation of a subset of differentiation associated enhancers. To confirm this enhancer-dependent mechanism, we demonstrate that CEBPA mutations must occur as the initial event in AML initiation. This improved mechanistic understanding will facilitate therapeutic development targeting the intersection of oncogene cooperativity.


Predicting transcription factor activity using prior biological information.

  • William M Yashar‎ et al.
  • iScience‎
  • 2024‎

Dysregulation of normal transcription factor activity is a common driver of disease. Therefore, the detection of aberrant transcription factor activity is important to understand disease pathogenesis. We have developed Priori, a method to predict transcription factor activity from RNA sequencing data. Priori has two key advantages over existing methods. First, Priori utilizes literature-supported regulatory information to identify transcription factor-target gene relationships. It then applies linear models to determine the impact of transcription factor regulation on the expression of its target genes. Second, results from a third-party benchmarking pipeline reveals that Priori detects aberrant activity from 124 single-gene perturbation experiments with higher sensitivity and specificity than 11 other methods. We applied Priori and other top-performing methods to predict transcription factor activity from two large primary patient datasets. Our work demonstrates that Priori uniquely discovered significant determinants of survival in breast cancer and identified mediators of drug response in leukemia.


MyD88 signalling is critical in the development of pancreatic cancer cachexia.

  • Xinxia Zhu‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2019‎

Up to 80% of pancreatic cancer patients suffer from cachexia, a devastating condition that exacerbates underlying disease, reduces quality of life, and increases treatment complications and mortality. Tumour-induced inflammation is linked to this multifactorial wasting syndrome, but mechanisms and effective treatments remain elusive. Myeloid differentiation factor (MyD88), a key component of the innate immune system, plays a pivotal role in directing the inflammatory response to various insults. In this study, we tested whether MyD88 signalling is essential in the development of pancreatic cancer cachexia using a robust mouse tumour model.


Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers.

  • Giovanni Lugli‎ et al.
  • PloS one‎
  • 2015‎

To assess the value of exosomal miRNAs as biomarkers for Alzheimer disease (AD), the expression of microRNAs was measured in a plasma fraction enriched in exosomes by differential centrifugation, using Illumina deep sequencing. Samples from 35 persons with a clinical diagnosis of AD dementia were compared to 35 age and sex matched controls. Although these samples contained less than 0.1 microgram of total RNA, deep sequencing gave reliable and informative results. Twenty miRNAs showed significant differences in the AD group in initial screening (miR-23b-3p, miR-24-3p, miR-29b-3p, miR-125b-5p, miR-138-5p, miR-139-5p, miR-141-3p, miR-150-5p, miR-152-3p, miR-185-5p, miR-338-3p, miR-342-3p, miR-342-5p, miR-548at-5p, miR-659-5p, miR-3065-5p, miR-3613-3p, miR-3916, miR-4772-3p, miR-5001-3p), many of which satisfied additional biological and statistical criteria, and among which a panel of seven miRNAs were highly informative in a machine learning model for predicting AD status of individual samples with 83-89% accuracy. This performance is not due to over-fitting, because a) we used separate samples for training and testing, and b) similar performance was achieved when tested on technical replicate data. Perhaps the most interesting single miRNA was miR-342-3p, which was a) expressed in the AD group at about 60% of control levels, b) highly correlated with several of the other miRNAs that were significantly down-regulated in AD, and c) was also reported to be down-regulated in AD in two previous studies. The findings warrant replication and follow-up with a larger cohort of patients and controls who have been carefully characterized in terms of cognitive and imaging data, other biomarkers (e.g., CSF amyloid and tau levels) and risk factors (e.g., apoE4 status), and who are sampled repeatedly over time. Integrating miRNA expression data with other data is likely to provide informative and robust biomarkers in Alzheimer disease.


Design and implementation of Metta, a metasearch engine for biomedical literature retrieval intended for systematic reviewers.

  • Neil R Smalheiser‎ et al.
  • Health information science and systems‎
  • 2014‎

Individuals and groups who write systematic reviews and meta-analyses in evidence-based medicine regularly carry out literature searches across multiple search engines linked to different bibliographic databases, and thus have an urgent need for a suitable metasearch engine to save time spent on repeated searches and to remove duplicate publications from initial consideration. Unlike general users who generally carry out searches to find a few highly relevant (or highly recent) articles, systematic reviewers seek to obtain a comprehensive set of articles on a given topic, satisfying specific criteria. This creates special requirements and challenges for metasearch engine design and implementation.


Rule-based deduplication of article records from bibliographic databases.

  • Yu Jiang‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2014‎

We recently designed and deployed a metasearch engine, Metta, that sends queries and retrieves search results from five leading biomedical databases: PubMed, EMBASE, CINAHL, PsycINFO and the Cochrane Central Register of Controlled Trials. Because many articles are indexed in more than one of these databases, it is desirable to deduplicate the retrieved article records. This is not a trivial problem because data fields contain a lot of missing and erroneous entries, and because certain types of information are recorded differently (and inconsistently) in the different databases. The present report describes our rule-based method for deduplicating article records across databases and includes an open-source script module that can be deployed freely. Metta was designed to satisfy the particular needs of people who are writing systematic reviews in evidence-based medicine. These users want the highest possible recall in retrieval, so it is important to err on the side of not deduplicating any records that refer to distinct articles, and it is important to perform deduplication online in real time. Our deduplication module is designed with these constraints in mind. Articles that share the same publication year are compared sequentially on parameters including PubMed ID number, digital object identifier, journal name, article title and author list, using text approximation techniques. In a review of Metta searches carried out by public users, we found that the deduplication module was more effective at identifying duplicates than EndNote without making any erroneous assignments.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: