Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

SWISS MADE: Standardized WithIn Class Sum of Squares to evaluate methodologies and dataset elements.

  • Christopher R Cabanski‎ et al.
  • PloS one‎
  • 2010‎

Contemporary high dimensional biological assays, such as mRNA expression microarrays, regularly involve multiple data processing steps, such as experimental processing, computational processing, sample selection, or feature selection (i.e. gene selection), prior to deriving any biological conclusions. These steps can dramatically change the interpretation of an experiment. Evaluation of processing steps has received limited attention in the literature. It is not straightforward to evaluate different processing methods and investigators are often unsure of the best method. We present a simple statistical tool, Standardized WithIn class Sum of Squares (SWISS), that allows investigators to compare alternate data processing methods, such as different experimental methods, normalizations, or technologies, on a dataset in terms of how well they cluster a priori biological classes. SWISS uses Euclidean distance to determine which method does a better job of clustering the data elements based on a priori classifications. We apply SWISS to three different gene expression applications. The first application uses four different datasets to compare different experimental methods, normalizations, and gene sets. The second application, using data from the MicroArray Quality Control (MAQC) project, compares different microarray platforms. The third application compares different technologies: a single Agilent two-color microarray versus one lane of RNA-Seq. These applications give an indication of the variety of problems that SWISS can be helpful in solving. The SWISS analysis of one-color versus two-color microarrays provides investigators who use two-color arrays the opportunity to review their results in light of a single-channel analysis, with all of the associated benefits offered by this design. Analysis of the MACQ data shows differential intersite reproducibility by array platform. SWISS also shows that one lane of RNA-Seq clusters data by biological phenotypes as well as a single Agilent two-color microarray.


Suppression of breast tumor growth and metastasis by an engineered transcription factor.

  • Adriana S Beltran‎ et al.
  • PloS one‎
  • 2011‎

Maspin is a tumor and metastasis suppressor playing an essential role as gatekeeper of tumor progression. It is highly expressed in epithelial cells but is silenced in the onset of metastatic disease by epigenetic mechanisms. Reprogramming of Maspin epigenetic silencing offers a therapeutic potential to lock metastatic progression. Herein we have investigated the ability of the Artificial Transcription Factor 126 (ATF-126) designed to upregulate the Maspin promoter to inhibit tumor progression in pre-established breast tumors in immunodeficient mice. ATF-126 was transduced in the aggressive, mesenchymal-like and triple negative breast cancer line, MDA-MB-231. Induction of ATF expression in vivo by Doxycycline resulted in 50% reduction in tumor growth and totally abolished tumor cell colonization. Genome-wide transcriptional profiles of ATF-induced cells revealed a gene signature that was found over-represented in estrogen receptor positive (ER+) "Normal-like" intrinsic subtype of breast cancer and in poorly aggressive, ER+ luminal A breast cancer cell lines. The comparison transcriptional profiles of ATF-126 and Maspin cDNA defined an overlapping 19-gene signature, comprising novel targets downstream the Maspin signaling cascade. Our data suggest that Maspin up-regulates downstream tumor and metastasis suppressor genes that are silenced in breast cancers, and are normally expressed in the neural system, including CARNS1, SLC8A2 and DACT3. In addition, ATF-126 and Maspin cDNA induction led to the re-activation of tumor suppressive miRNAs also expressed in neural cells, such as miR-1 and miR-34, and to the down-regulation of potential oncogenic miRNAs, such as miR-10b, miR-124, and miR-363. As expected from its over-representation in ER+ tumors, the ATF-126-gene signature predicted favorable prognosis for breast cancer patients. Our results describe for the first time an ATF able to reduce tumor growth and metastatic colonization by epigenetic reactivation of a dormant, normal-like, and more differentiated gene program.


Combinatorial treatment of DNA and chromatin-modifying drugs cause cell death in human and canine osteosarcoma cell lines.

  • Venugopal Thayanithy‎ et al.
  • PloS one‎
  • 2012‎

Downregulation of microRNAs (miRNAs) at the 14q32 locus stabilizes the expression of cMYC, thus significantly contributing to osteosarcoma (OS) pathobiology. Here, we show that downregulation of 14q32 miRNAs is epigenetically regulated. The predicted promoter regions of miRNA clusters at 14q32 locus showed no recurrent patterns of differential methylation, but Saos2 cells showed elevated histone deacetylase (HDAC) activity. Treatment with 4-phenylbutyrate increased acetylation of histones associated with 14q32 miRNAs, but interestingly, robust restoration of 14q32 miRNA expression, attenuation of cMYC expression, and induction of apoptosis required concomitant treatment with 5-Azacytidine, an inhibitor of DNA methylation. These events were associated with genome-wide gene expression changes including induction of pro-apoptotic genes and downregulation of cell cycle genes. Comparable effects were achieved in human and canine OS cells using the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) and the DNA methylation inhibitor Zebularine (Zeb), with significantly more pronounced cytotoxicity in cells whose molecular phenotypes were indicative of aggressive biological behavior. These results suggested that the combination of these chromatin-modifying drugs may be a useful adjuvant in the treatment of rapidly progressive OS.


Genetic signature of histiocytic sarcoma revealed by a sleeping beauty transposon genetic screen in mice.

  • Raha A Been‎ et al.
  • PloS one‎
  • 2014‎

Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients.


Association of a novel endometrial cancer biomarker panel with prognostic risk, platinum insensitivity, and targetable therapeutic options.

  • Jesus Gonzalez Bosquet‎ et al.
  • PloS one‎
  • 2021‎

During the past decade, the age-adjusted mortality rate for endometrial cancer (EC) increased 1.9% annually with TP53 mutant (TP53-mu) EC disproportionally represented in advanced disease and deaths. Therefore, we aimed to assess pivotal molecular parameters that differentiate clinical outcomes in high- and low-risk EC. Using the Cancer Genome Atlas, we analyzed EC specimens with available DNA sequences and quantitative gene-specific RNA expression data. After polymerase ɛ (POLE)-mutant specimens were excluded, differential gene-specific mutations and mRNA expressions were annotated and integrated. Consequent to TP53-mu failure to induce p21, derepression of multiple oncogenes harboring promoter p21 repressive sites was observed, including CCNA2 and FOXM1 (P < .001 compared with TP53 wild type [TP53-wt]). TP53-wt EC with high CCNA2 expression (CCNA2-H) had a targeted transcriptomic profile similar to that of TP53-mu EC, suggesting CCNA2 is a seminal determinant for both TP53-wt and TP53-mu EC. CCNA2 enhances E2F1 function, upregulating FOXM1 and CIP2A, as observed in TP53-mu and CCNA2-H TP53-wt EC (P < .001). CIP2A inhibits protein phosphatase 2A, leading to AKT inactivation of GSK3β and restricted oncoprotein degradation; PPP2R1A and FBXW7 mutations yield similar results. Upregulation of FOXM1 and failed degradation of FOXM1 is evidenced by marked upregulation of multiple homologous recombination genes (P < .001). Integrating these molecular aberrations generated a molecular biomarker panel with significant prognostic discrimination (P = 5.8×10-7); adjusting for age, histology, grade, myometrial invasion, TP53 status, and stage, only CCNA2-H/E2F1-H (P = .0003), FBXW7-mu/PPP2R1A-mu (P = .0002), and stage (P = .017) were significant. The generated prognostic molecular classification system identifies dissimilar signaling aberrations potentially amenable to targetable therapeutic options.


Conventional chemotherapy and oncogenic pathway targeting in ovarian carcinosarcoma using a patient-derived tumorgraft.

  • Gretchen Glaser‎ et al.
  • PloS one‎
  • 2015‎

Ovarian carcinosarcoma is a rare subtype of ovarian cancer with poor clinical outcomes. The low incidence of this disease makes accrual to large clinical trials challenging. However, studies have shown that treatment responses in patient-derived xenograft (PDX) models correlate with matched-patient responses in the clinic, supporting their use for preclinical testing of standard and novel therapies. An ovarian carcinosarcoma PDX is presented herein and showed resistance to carboplatin and paclitaxel (similar to the patient) but exhibited significant sensitivity to ifosfamide and paclitaxel. The PDX demonstrated overexpression of EGFR mRNA and gene amplification by array comparative genomic hybridization (log2 ratio 0.399). EGFR phosphorylation was also detected. Angiogensis and insulin-like growth factor pathways were also implicated by overexpression of VEGFC and IRS1. In order to improve response to chemotherapy, the PDX was treated with carboplatin/paclitaxel with or without a pan-HER and VEGF inhibitor (BMS-690514) but there was no tumor growth inhibition or improved animal survival, which may be explained by a KRAS mutation. Resistance was also observed when the IGF-1R inhibitor BMS-754807 was combined with carboplatin/paclitaxel. Because poly (ADP-ribose) polymerase inhibitors have activity in ovarian cancer patients, with and without BRCA mutations, ABT-888 was also tested but found to have no activity. Pathogenic mutations were also detected in TP53 and PIK3CA. In conclusion, ifosfamide/paclitaxel was superior to carboplatin/paclitaxel in this ovarian carcinosarcoma PDX and gene overexpression or amplification alone was not sufficient to predict response to targeted therapy. Better predictive markers of response are needed.


Identification of key genes and immune infiltration modulated by CPAP in obstructive sleep apnea by integrated bioinformatics analysis.

  • Cheng Fan‎ et al.
  • PloS one‎
  • 2021‎

Patients with obstructive sleep apnea (OSA) experience partial or complete upper airway collapses during sleep resulting in nocturnal hypoxia-normoxia cycling, and continuous positive airway pressure (CPAP) is the golden treatment for OSA. Nevertheless, the exact mechanisms of action, especially the transcriptome effect of CPAP on OSA patients, remain elusive. The goal of this study was to evaluate the longitudinal alterations in peripheral blood mononuclear cells transcriptome profiles of OSA patients in order to identify the hub gene and immune response. GSE133601 was downloaded from Gene Expression Omnibus (GEO). We identified black module via weighted gene co-expression network analysis (WGCNA), the genes in which were correlated significantly with the clinical trait of CPAP treatment. Finally, eleven hub genes (TRAV10, SNORA36A, RPL10, OBP2B, IGLV1-40, H2BC8, ESAM, DNASE1L3, CD22, ANK3, ACP3) were traced and used to construct a random forest model to predict therapeutic efficacy of CPAP in OSA with a good performance with AUC of 0.92. We further studied the immune cells infiltration in OSA patients with CIBERSORT, and monocytes were found to be related with the remission of OSA and partially correlated with the hub genes identified. In conclusion, these key genes and immune infiltration may be of great importance in the remission of OSA and related research of these genes may provide a new therapeutic target for OSA in the future.


Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer.

  • Marc A Becker‎ et al.
  • PloS one‎
  • 2016‎

Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer.


Overcoming platinum resistance in ovarian cancer by targeting pregnancy-associated plasma protein-A.

  • Diogo Torres‎ et al.
  • PloS one‎
  • 2019‎

Inhibition of pregnancy-associated plasma protein-A (PAPP-A), an upstream activator of the insulin-like growth factor (IGF) pathway, is known to augment sensitivity to platinum-based chemotherapy. This study further tests the efficacy of PAPP-A inhibition with a monoclonal antibody inhibitor (mAb-PA) in ovarian cancer (OC) platinum-resistant patient-derived xenograft (PDX) models.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: