Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 146 papers

Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature‎
  • 2016‎

Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.


Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling.

  • Haiying Li‎ et al.
  • The Journal of cell biology‎
  • 2015‎

Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosomal system is critical in its regulation. In this study we report that Notch recycling to the cell surface is dependent on the COMMD-CCDC22-CCDC93 (CCC) complex, a recently identified regulator of endosomal trafficking. Disruption in this system leads to intracellular accumulation of Notch2 and concomitant reduction in Notch signaling. Interestingly, among the 10 copper metabolism MURR1 domain containing (COMMD) family members that can associate with the CCC complex, only COMMD9 and its binding partner, COMMD5, have substantial effects on Notch. Furthermore, Commd9 deletion in mice leads to embryonic lethality and complex cardiovascular alterations that bear hallmarks of Notch deficiency. Altogether, these studies highlight that the CCC complex controls Notch activation by modulating its intracellular trafficking and demonstrate cargo-specific effects for members of the COMMD protein family.


Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma.

  • Renumathy Dhanasekaran‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2015‎

In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1-Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1-Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild-type mice. Lung metastases were found in 75% of Sulf1-Tg mice but not in wild-type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor-β (TGF-β)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF-β/SMAD pathway is functional; overexpression of SULF1 promotes TGF-β-induced gene expression and epithelial-mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF-β from the cell surface. We also show that SULF1 expression decreases the interaction between TGF-β1 and its heparan sulfate proteoglycan sequestration receptor, TGFβR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence-free survival (hazard ratio 4.1, 95% confidence interval 1.9-8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF-β expression and with several TGF-β-related epithelial-mesenchymal transition genes in human HCC.


Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element.

  • Marc R Mansour‎ et al.
  • Science (New York, N.Y.)‎
  • 2014‎

In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.


Targeting HER2 in patient-derived xenograft ovarian cancer models sensitizes tumors to chemotherapy.

  • Faye R Harris‎ et al.
  • Molecular oncology‎
  • 2019‎

Ovarian cancer is the most lethal gynecologic malignancy. About 75% of ovarian cancer patients relapse and/or develop chemo-resistant disease after initial response to standard-of-care treatment with platinum-based therapies. HER2 amplifications and overexpression in ovarian cancer are reported to vary, and responses to HER2 inhibitors have been poor. Next generation sequencing technologies in conjunction with testing using patient-derived xenografts (PDX) allow validation of personalized treatments. Using a whole-genome mate-pair next generation sequencing (MPseq) protocol, we identified several high grade serous ovarian cancers (HGS-OC) with DNA alterations in genes encoding members of the ERBB2 pathway. The efficiency of anti-HER2 therapy was tested in three different PDX lines with the identified alterations and high levels of HER2 protein expression. Treatment responses to pertuzumab or pertuzumab/trastuzumab were compared in each PDX line WITH standard carboplatin and paclitaxel combination treatment. In all three PDX models, HER2-targeted therapy resulted in significant inhibition of tumor growth compared with untreated controls. However, the responses in each case were inferior to those to chemotherapy, even for chemo-resistant lines. When chemotherapy and HER2-targeted therapy were administered together, a significant regression of tumor was observed after 6 weeks of treatment compared with chemotherapy alone. Post-treatment analysis of these tissues revealed that inhibition of the ERBB2 pathway occurred at the level of phosphorylation and expression of downstream targets. In conclusion, while targeting of presumably activated ERBB2 pathway alone in HGS-OC results in a modest treatment benefit, a combination therapy including both chemotherapy drugs and HER2 inhibitors provides a far better response. Further studies are needed to address development of recurrence and sensitivity of recurrent disease to HER2-targeted therapy.


Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.

  • Tyler J Bussian‎ et al.
  • Nature‎
  • 2018‎

Cellular senescence, which is characterized by an irreversible cell-cycle arrest1 accompanied by a distinctive secretory phenotype2, can be induced through various intracellular and extracellular factors. Senescent cells that express the cell cycle inhibitory protein p16INK4A have been found to actively drive naturally occurring age-related tissue deterioration3,4 and contribute to several diseases associated with ageing, including atherosclerosis5 and osteoarthritis6. Various markers of senescence have been observed in patients with neurodegenerative diseases7-9; however, a role for senescent cells in the aetiology of these pathologies is unknown. Here we show a causal link between the accumulation of senescent cells and cognition-associated neuronal loss. We found that the MAPTP301SPS19 mouse model of tau-dependent neurodegenerative disease10 accumulates p16INK4A-positive senescent astrocytes and microglia. Clearance of these cells as they arise using INK-ATTAC transgenic mice prevents gliosis, hyperphosphorylation of both soluble and insoluble tau leading to neurofibrillary tangle deposition, and degeneration of cortical and hippocampal neurons, thus preserving cognitive function. Pharmacological intervention with a first-generation senolytic modulates tau aggregation. Collectively, these results show that senescent cells have a role in the initiation and progression of tau-mediated disease, and suggest that targeting senescent cells may provide a therapeutic avenue for the treatment of these pathologies.


JDP2: An oncogenic bZIP transcription factor in T cell acute lymphoblastic leukemia.

  • Marc R Mansour‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2 is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2 is one of few oncogenes capable of initiating T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1 and demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate overexpression of MCL1 as a mechanism of steroid resistance in JDP2-overexpressing cells.


The requirement for cyclin D function in tumor maintenance.

  • Yoon Jong Choi‎ et al.
  • Cancer cell‎
  • 2012‎

D-cyclins represent components of cell cycle machinery. To test the efficacy of targeting D-cyclins in cancer treatment, we engineered mouse strains that allow acute and global ablation of individual D-cyclins in a living animal. Ubiquitous shutdown of cyclin D1 or inhibition of cyclin D-associated kinase activity in mice bearing ErbB2-driven mammary carcinomas triggered tumor cell senescence, without compromising the animals' health. Ablation of cyclin D3 in mice bearing Notch1-driven T cell acute lymphoblastic leukemias (T-ALL) triggered tumor cell apoptosis. Such selective killing of leukemic cells can also be achieved by inhibiting cyclin D associated kinase activity in mouse and human T-ALL models. Inhibition of cyclin D-kinase activity represents a highly-selective anticancer strategy that specifically targets cancer cells without significantly affecting normal tissues.


SIRT2 induces the checkpoint kinase BubR1 to increase lifespan.

  • Brian J North‎ et al.
  • The EMBO journal‎
  • 2014‎

Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1(H/H)) live shorter and show signs of accelerated aging. As wild-type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age-related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1-7) are a family of NAD(+)-dependent deacetylases that can delay age-related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD(+) and the ability of SIRT2 to maintain lysine-668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD(+) precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1(H/H) animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD(+) to delay diseases of aging in mammals is warranted.


Ridaforolimus (MK-8669) synergizes with Dalotuzumab (MK-0646) in hormone-sensitive breast cancer.

  • Marc A Becker‎ et al.
  • BMC cancer‎
  • 2016‎

Mammalian target of rapamycin (mTOR) represents a key downstream intermediate for a myriad of oncogenic receptor tyrosine kinases. In the case of the insulin-like growth factor (IGF) pathway, the mTOR complex (mTORC1) mediates IGF-1 receptor (IGF-1R)-induced estrogen receptor alpha (ERα) phosphorylation/activation and leads to increased proliferation and growth in breast cancer cells. As a result, the prevalence of mTOR inhibitors combined with hormonal therapy has increased in recent years. Conversely, activated mTORC1 provides negative feedback regulation of IGF signaling via insulin receptor substrate (IRS)-1/2 serine phosphorylation and subsequent proteasomal degradation. Thus, the IGF pathway may provide escape (e.g. de novo or acquired resistance) from mTORC1 inhibitors. It is therefore plausible that combined inhibition of mTORC1 and IGF-1R for select subsets of ER-positive breast cancer patients presents as a viable therapeutic option.


The progeroid gene BubR1 regulates axon myelination and motor function.

  • Chan-Il Choi‎ et al.
  • Aging‎
  • 2016‎

Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant. We found that oligodendrocyte progenitor cell proliferation and oligodendrocyte density is markedly reduced in mutant mice with low amounts of BubR1 (BubR1H/H mice), causing axonal hypomyelination in both brain and spinal cord. Expression of essential myelin-related genes such as MBP and PLP1 was significantly reduced in these tissues. Consistent with defective myelination, BubR1H/H mice exhibited various motor deficits, including impaired motor strength, coordination, and balance, irregular gait patterns and reduced locomotor activity. Collectively, these data suggest that BubR1 is a key determinant of oligodendrocyte production and function and provide a molecular entry point to understand age-related degenerative changes in axon myelination.


Critical Role for GAB2 in Neuroblastoma Pathogenesis through the Promotion of SHP2/MYCN Cooperation.

  • Xiaoling Zhang‎ et al.
  • Cell reports‎
  • 2017‎

Growing evidence suggests a major role for Src-homology-2-domain-containing phosphatase 2 (SHP2/PTPN11) in MYCN-driven high-risk neuroblastoma, although biologic confirmation and a plausible mechanism for this contribution are lacking. Using a zebrafish model of MYCN-overexpressing neuroblastoma, we demonstrate that mutant ptpn11 expression in the adrenal gland analog of MYCN transgenic fish promotes the proliferation of hyperplastic neuroblasts, accelerates neuroblastomagenesis, and increases tumor penetrance. We identify a similar mechanism in tumors with wild-type ptpn11 and dysregulated Gab2, which encodes a Shp2 activator that is overexpressed in human neuroblastomas. In MYCN transgenic fish, Gab2 overexpression activated the Shp2-Ras-Erk pathway, enhanced neuroblastoma induction, and increased tumor penetrance. We conclude that MYCN cooperates with either GAB2-activated or mutant SHP2 in human neuroblastomagenesis. Our findings further suggest that combined inhibition of MYCN and the SHP2-RAS-ERK pathway could provide effective targeted therapy for high-risk neuroblastoma patients with MYCN amplification and aberrant SHP2 activation.


Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts.

  • Kristina A Butler‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Interest in preclinical drug development for ovarian cancer has stimulated development of patient-derived xenograft (PDX) or tumorgraft models. However, the unintended formation of human lymphoma in severe combined immunodeficiency (SCID) mice from Epstein-Barr virus (EBV)-infected human lymphocytes can be problematic. In this study, we have characterized ovarian cancer PDXs which developed human lymphomas and explore methods to suppress lymphoproliferative growth. Fresh human ovarian tumors from 568 patients were transplanted intraperitoneally in SCID mice. A subset of PDX models demonstrated atypical patterns of dissemination with mediastinal masses, hepatosplenomegaly, and CD45-positive lymphoblastic atypia without ovarian tumor engraftment. Expression of human CD20 but not CD3 supported a B-cell lineage, and EBV genomes were detected in all lymphoproliferative tumors. Immunophenotyping confirmed monoclonal gene rearrangements consistent with B-cell lymphoma, and global gene expression patterns correlated well with other human lymphomas. The ability of rituximab, an anti-CD20 antibody, to suppress human lymphoproliferation from a patient's ovarian tumor in SCID mice and prevent growth of an established lymphoma led to a practice change with a goal to reduce the incidence of lymphomas. A single dose of rituximab during the primary tumor heterotransplantation process reduced the incidence of CD45-positive cells in subsequent PDX lines from 86.3% (n = 117 without rituximab) to 5.6% (n = 160 with rituximab), and the lymphoma rate declined from 11.1% to 1.88%. Taken together, investigators utilizing PDX models for research should routinely monitor for lymphoproliferative tumors and consider implementing methods to suppress their growth.


Correction of microtubule-kinetochore attachment errors: mechanisms and role in tumor suppression.

  • Robin M Ricke‎ et al.
  • Seminars in cell & developmental biology‎
  • 2011‎

During mitosis, cells segregate duplicated chromosomes with high fidelity in order to maintain genome stability. Proper attachment of sister kinetochores to spindle microtubules is critical for accurate chromosome segregation and is driven by complex mechanisms that promote the capture of unattached kinetochores and the resolution of erroneously attached kinetochores. Defects in these surveillance systems promote chromosome segregation and aneuploidy and can contribute to neoplastic transformation. Understanding, how, at the molecular level, accurate chromosome segregation is achieved may be crucial for our understanding of how cancer cells develop genome instability.


Zebrafish foxd3 is selectively required for neural crest specification, migration and survival.

  • Rodney A Stewart‎ et al.
  • Developmental biology‎
  • 2006‎

The vertebrate neural crest is a pluripotent cell population that generates a large variety of cell types, including peripheral neurons, cartilage and pigment cells. Mechanisms that control the patterning of the neural crest toward specific cell fates remain only partially understood. Zebrafish homozygous for the sympathetic mutation 1 (sym1) have defects in a subset of neural crest derivatives, such as peripheral neurons, glia and cartilage, but retain normal numbers of melanocytes. The sym1 mutation is a nucleotide deletion that disrupts the forkhead DNA-binding domain of the foxd3 gene, which encodes a conserved winged-helix transcription factor. We show that sym1 mutants have normal numbers of premigratory neural crest cells, but these cells express reduced levels of snai1b and sox10, implicating foxd3 as an essential regulator of these transcription factors in the premigratory neural crest. The onset of neural crest migration is also delayed in sym1 mutants, and there is a reduction in the number of migratory trunk neural crest cells, particularly along the medial migration pathway. TUNEL analysis revealed aberrant apoptosis localized to the hindbrain neural crest at the 15-somite stage, indicating a critical role for foxd3 in the survival of a subpopulation of neural crest cells. These results show that foxd3 selectively specifies premigratory neural crest cells for a neuronal, glial or cartilage fate, by inducing the expression of lineage-associated transcription factors in these cells and regulating their subsequent migration.


Activating mutations in ALK provide a therapeutic target in neuroblastoma.

  • Rani E George‎ et al.
  • Nature‎
  • 2008‎

Neuroblastoma, an embryonal tumour of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer. High-risk neuroblastomas are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germ line. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK complementary DNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed interleukin-3-dependent murine haematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to the small-molecule inhibitor of ALK, TAE684 (ref. 4). Furthermore, two human neuroblastoma cell lines harbouring the F1174L mutation were also sensitive to the inhibitor. Cytotoxicity was associated with increased amounts of apoptosis as measured by TdT-mediated dUTP nick end labelling (TUNEL). Short hairpin RNA (shRNA)-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumours and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.


The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival.

  • Malay Mandal‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

The pre-T cell receptor (TCR) is expressed early during T cell development and imposes a tight selection for differentiating T cell progenitors. Pre-TCR-expressing cells are selected to survive and differentiate further, whereas pre-TCR(-) cells are "negatively" selected to die. The mechanisms of pre-TCR-mediated survival are poorly understood. Here, we describe the induction of the antiapoptotic gene BCL2A1 (A1) as a potential mechanism regulating inhibition of pre-T cell death. We characterize in detail the signaling pathway involved in A1 induction and show that A1 expression can induce pre-T cell survival by inhibiting activation of caspase-3. Moreover, we show that in vitro "knockdown" of A1 expression can compromise survival even in the presence of a functional pre-TCR. Finally, we suggest that pre-TCR-induced A1 overexpression can contribute to T cell leukemia in both mice and humans.


LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors.

  • Ting Tao‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

LIN28B is highly expressed in neuroblastoma and promotes tumorigenesis, at least, in part, through inhibition of let-7 microRNA biogenesis. Here, we report that overexpression of either wild-type (WT) LIN28B or a LIN28B mutant that is unable to inhibit let-7 processing increases the penetrance of MYCN-induced neuroblastoma, potentiates the invasion and migration of transformed sympathetic neuroblasts, and drives distant metastases in vivo. Genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and coimmunoprecipitation experiments show that LIN28B binds active gene promoters in neuroblastoma cells through protein-protein interaction with the sequence-specific zinc-finger transcription factor ZNF143 and activates the expression of downstream targets, including transcription factors forming the adrenergic core regulatory circuitry that controls the malignant cell state in neuroblastoma as well as GSK3B and L1CAM that are involved in neuronal cell adhesion and migration. These findings reveal an unexpected let-7-independent function of LIN28B in transcriptional regulation during neuroblastoma pathogenesis.


Clinicopathologic models predicting non-sentinel lymph node metastasis in cutaneous melanoma patients: Are they useful for patients with a single positive sentinel node?

  • Barbara Rentroia-Pacheco‎ et al.
  • Journal of surgical oncology‎
  • 2022‎

Of clinically node-negative (cN0) cutaneous melanoma patients with sentinel lymph node (SLN) metastasis, between 10% and 30% harbor additional metastases in non-sentinel lymph nodes (NSLNs). Approximately 80% of SLN-positive patients have a single positive SLN.


Targeting MET and FGFR in Relapsed or Refractory Acute Myeloid Leukemia: Preclinical and Clinical Findings, and Signal Transduction Correlates.

  • Evan C Chen‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2023‎

Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) have poor outcomes and require new therapies. In AML, autocrine production of hepatocyte growth factor (HGF) drives MET signaling that promotes myeloblast growth and survival, making MET an attractive therapeutic target. MET inhibition exhibits activity in AML preclinical studies, but HGF upregulation by the FGFR pathway is a common mechanism of resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: