Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma.

  • Roberto Jose Diaz‎ et al.
  • Oncotarget‎
  • 2015‎

Medulloblastoma comprises four molecular subgroups of which Group 3 medulloblastoma is characterized by MYC amplification and MYC overexpression. Lymphoma cells expressing high levels of MYC are susceptible to apoptosis following treatment with inhibitors of mitosis. One of the key regulatory kinases involved in multiple stages of mitosis is Aurora kinase B. We hypothesized that medulloblastoma cells that overexpress MYC would be uniquely sensitized to the apoptotic effects of Aurora B inhibition. The specific inhibition of Aurora kinase B was achieved in MYC- overexpressing medulloblastoma cells with AZD1152-HQPA. MYC overexpression sensitized medulloblastoma cells to cell death upon Aurora B inhibition. This process was found to be independent of endoreplication. Using both flank and intracranial cerebellar xenografts we demonstrate that tumors formed from MYC-overexpressing medulloblastoma cells show a response to Aurora B inhibition including growth impairment and apoptosis induction. Lastly, we show the distribution of AZD1152-HQPA within the mouse brain and the ability to inhibit intracranial tumor growth and prolong survival in mice bearing tumors formed from MYC-overexpressing medulloblastoma cells. Our results suggest the potential for therapeutic application of Aurora kinase B inhibitors in the treatment of Group 3 medulloblastoma.


A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma.

  • Fengfei Wang‎ et al.
  • Oncotarget‎
  • 2015‎

Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target.


Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes.

  • Lisa Liang‎ et al.
  • Oncotarget‎
  • 2015‎

Major research efforts have focused on defining cell surface marker profiles for characterization and selection of brain tumor stem/progenitor cells. Medulloblastoma is the most common primary malignant pediatric brain cancer and consists of 4 molecular subgroups: WNT, SHH, Group 3 and Group 4. Given the heterogeneity within and between medulloblastoma variants, surface marker profiles may be subtype-specific. Here, we employed a high throughput flow cytometry screen to identify differentially expressed cell surface markers in self-renewing vs. non-self-renewing SHH medulloblastoma cells. The top 25 markers were reduced to 4, CD271/p75NTR/NGFR, CD106/VCAM1, EGFR and CD171/NCAM-L1, by evaluating transcript levels in SHH tumors relative to samples representing the other variants. However, only CD271/p75NTR/NGFR and CD171/NCAM-L1 maintain differential expression between variants at the protein level. Functional characterization of CD271, a low affinity neurotrophin receptor, in cell lines and primary cultures suggested that CD271 selects for lower self-renewing progenitors or stem cells. Moreover, CD271 levels were negatively correlated with expression of SHH pathway genes. Our study reveals a novel role for CD271 in SHH medulloblastoma and suggests that targeting CD271 pathways could lead to the design of more selective therapies that lessen the broad impact of current treatments on developing nervous systems.


Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma.

  • Eric W Prince‎ et al.
  • Oncotarget‎
  • 2016‎

Checkpoint kinase 1 (CHK1) is an integral component of the cell cycle as well as the DNA Damage Response (DDR) pathway. Previous work has demonstrated the effectiveness of inhibiting CHK1 with small-molecule inhibitors, but the role of CHK1 mediated DDR in medulloblastoma is unknown. CHK1, both at the mRNA and protein level, is highly expressed in medulloblastoma and elevated CHK1 expression in Group3 medulloblastoma is an adverse prognostic marker. CHK1 inhibition with the small-molecule drug AZD7762, results in decreased cell growth, increased DNA damage and cell apoptosis. Furthermore, AZD7762 acts in synergy with cisplatin in reducing cell proliferation in medulloblastoma. Similar phenotypic changes were observed with another CHK1 inhibitor, PF477736, as well as genetic knockdown using siRNA against CHK1. Treatments with small-molecule inhibitors of CHK1 profoundly modulated the expression of both upstream and downstream target proteins within the CHK1 signaling pathways. This suggests the presence of a feedback loop in activating CHK1. Overall, our results demonstrate that small-molecule inhibition of CHK1 in combination with, cisplatin, is more advantageous than either treatment alone, especially for Group 3 medulloblastoma, and therefore this combined therapeutic approach serves as an avenue for further investigation.


Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress.

  • Sekyung Oh‎ et al.
  • Oncotarget‎
  • 2016‎

DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3's interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5'UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3's role in this process. Arsenite-induced stress shifts DDX3 binding from the 5'UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.


Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma.

  • Sujatha Venkataraman‎ et al.
  • Oncotarget‎
  • 2014‎

Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo.


Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma.

  • Claudia C Faria‎ et al.
  • Oncotarget‎
  • 2015‎

Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma.


Proteomic profiling of high risk medulloblastoma reveals functional biology.

  • Jerome A Staal‎ et al.
  • Oncotarget‎
  • 2015‎

Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior.


MAP4K4 controlled integrin β1 activation and c-Met endocytosis are associated with invasive behavior of medulloblastoma cells.

  • Dimitra Tripolitsioti‎ et al.
  • Oncotarget‎
  • 2018‎

Local tissue infiltration of Medulloblastoma (MB) tumor cells precedes metastatic disease but little is still known about intrinsic regulation of migration and invasion in these cells. We found that MAP4K4, a pro-migratory Ser/Thr kinase, is overexpressed in 30% of primary MB tumors and that increased expression is particularly associated with the frequently metastatic SHH β subtype. MAP4K4 is a driver of migration and invasion downstream of c-Met, which is transcriptionally up-regulated in SHH MB. Consistently, depletion of MAP4K4 in MB tumor cells restricts HGF-driven matrix invasion in vitro and brain tissue infiltration ex vivo. We show that these pro-migratory functions of MAP4K4 involve the activation of the integrin β-1 adhesion receptor and are associated with increased endocytic uptake. The consequent enhanced recycling of c-Met caused by MAP4K4 results in the accumulation of activated c-Met in cytosolic vesicles, which is required for sustained signaling and downstream pathway activation. The parallel increase of c-Met and MAP4K4 expression in SHH MB could predict an increased potential of these tumors to infiltrate brain tissue and cause metastatic disease. Molecular targeting of the underlying accelerated endocytosis and receptor recycling could represent a novel approach to block pro-migratory effector functions of MAP4K4 in metastatic cancers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: