Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination.

  • Michael B Keough‎ et al.
  • Nature communications‎
  • 2016‎

Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders.


Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination.

  • Greg J Duncan‎ et al.
  • Nature communications‎
  • 2018‎

Remyelination occurs after spinal cord injury (SCI) but its functional relevance is unclear. We assessed the necessity of myelin regulatory factor (Myrf) in remyelination after contusive SCI by deleting the gene from platelet-derived growth factor receptor alpha positive (PDGFRα-positive) oligodendrocyte progenitor cells (OPCs) in mice prior to SCI. While OPC proliferation and density are not altered by Myrf inducible knockout after SCI, the accumulation of new oligodendrocytes is largely prevented. This greatly inhibits myelin regeneration, resulting in a 44% reduction in myelinated axons at the lesion epicenter. However, spontaneous locomotor recovery after SCI is not altered by remyelination failure. In controls with functional MYRF, locomotor recovery precedes the onset of most oligodendrocyte myelin regeneration. Collectively, these data demonstrate that MYRF expression in PDGFRα-positive cell derived oligodendrocytes is indispensable for myelin regeneration following contusive SCI but that oligodendrocyte remyelination is not required for spontaneous recovery of stepping.


Quantitative disease progression model of α-1 proteinase inhibitor therapy on computed tomography lung density in patients with α-1 antitrypsin deficiency.

  • Michael A Tortorici‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

Early-onset emphysema attributed to α-1 antitrypsin deficiency (AATD) is frequently overlooked and undertreated. RAPID-RCT/RAPID-OLE, the largest clinical trials of purified human α-1 proteinase inhibitor (A1 -PI; 60 mg kg-1  week-1 ) therapy completed to date, demonstrated for the first time that A1 -PI is clinically effective in slowing lung tissue loss in AATD. A posthoc pharmacometric analysis was undertaken to further explore dose, exposure and response.


Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis.

  • Jason R Plemel‎ et al.
  • The Journal of cell biology‎
  • 2017‎

Cellular injury and death are ubiquitous features of disease, yet tools to detect them are limited and insensitive to subtle pathological changes. Acridine orange (AO), a nucleic acid dye with unique spectral properties, enables real-time measurement of RNA and DNA as proxies for cell viability during exposure to various noxious stimuli. This tool illuminates spectral signatures unique to various modes of cell death, such as cells undergoing apoptosis versus necrosis/necroptosis. This new approach also shows that cellular RNA decreases during necrotic, necroptotic, and apoptotic cell death caused by demyelinating, ischemic, and traumatic injuries, implying its involvement in a wide spectrum of tissue pathologies. Furthermore, cells with pathologically low levels of cytoplasmic RNA are detected earlier and in higher numbers than with standard markers including TdT-mediated dUTP biotin nick-end labeling and cleaved caspase 3 immunofluorescence. Our technique highlights AO-labeled cytoplasmic RNA as an important early marker of cellular injury and a sensitive indicator of various modes of cell death in a range of experimental models.


Single-cell microglial transcriptomics during demyelination defines a microglial state required for lytic carcass clearance.

  • Sameera Zia‎ et al.
  • Molecular neurodegeneration‎
  • 2022‎

Microglia regulate the response to injury and disease in the brain and spinal cord. In white matter diseases microglia may cause demyelination. However, how microglia respond and regulate demyelination is not fully understood.


Proteomic profiling based classification of CLL provides prognostication for modern therapy and identifies novel therapeutic targets.

  • Ti'ara L Griffen‎ et al.
  • Blood cancer journal‎
  • 2022‎

Protein expression for 384 total and post-translationally modified proteins was assessed in 871 CLL and MSBL patients and was integrated with clinical data to identify strategies for improving diagnostics and therapy, making this the largest CLL proteomics study to date. Proteomics identified six recurrent signatures that were highly prognostic of survival and time to first or second treatment at three levels: individual proteins, when grouped into 40 functionally related groups (PFGs), and systemically in signatures (SGs). A novel SG characterized by hairy cell leukemia like proteomics but poor therapy response was discovered. SG membership superseded other prognostic factors (Rai Staging, IGHV Status) and were prognostic for response to modern (BTK inhibition) and older CLL therapies. SGs and PFGs membership provided novel drug targets and defined optimal candidates for Watch and Wait vs. early intervention. Collectively proteomics demonstrates promise for improving classification, therapeutic strategy selection, and identifying novel therapeutic targets.


Sex differences in the inflammatory response of the mouse DRG and its connection to pain in experimental autoimmune encephalomyelitis.

  • Aislinn D Maguire‎ et al.
  • Scientific reports‎
  • 2022‎

Multiple Sclerosis (MS) is an autoimmune disease with notable sex differences. Women are not only more likely to develop MS but are also more likely than men to experience neuropathic pain in the disease. It has been postulated that neuropathic pain in MS can originate in the peripheral nervous system at the level of the dorsal root ganglia (DRG), which houses primary pain sensing neurons (nociceptors). These nociceptors become hyperexcitable in response to inflammation, leading to peripheral sensitization and eventually central sensitization, which maintains pain long-term. The mouse model experimental autoimmune encephalomyelitis (EAE) is a good model for human MS as it replicates classic MS symptoms including pain. Using EAE mice as well as naïve primary mouse DRG neurons cultured in vitro, we sought to characterize sex differences, specifically in peripheral sensory neurons. We found sex differences in the inflammatory profile of the EAE DRG, and in the TNFα downstream signaling pathways activated intracellularly in cultured nociceptors. We also found increased cell death with TNFα treatment. Given that TNFα signaling has been shown to initiate intrinsic apoptosis through mitochondrial disruption, this led us to investigate sex differences in the mitochondria's response to TNFα. Our results demonstrate that male sensory neurons are more sensitive to mitochondrial stress, making them prone to neuronal injury. In contrast, female sensory neurons appear to be more resistant to mitochondrial stress and exhibit an inflammatory and regenerative phenotype that may underlie greater nociceptor hyperexcitability and pain. Understanding these sex differences at the level of the primary sensory neuron is an important first step in our eventual goal of developing sex-specific treatments to halt pain development in the periphery before central sensitization is established.


Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized by Ex Vivo Live Multiphoton Imaging.

  • Khalil S Rawji‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Aging impairs regenerative processes including remyelination, the synthesis of a new myelin sheath. Microglia and other infiltrating myeloid cells such as macrophages are essential for remyelination through mechanisms that include the clearance of inhibitory molecules within the lesion. Prior studies have shown that the quantity of myeloid cells and the clearance of inhibitory myelin debris are deficient in aging, contributing to the decline in remyelination efficiency with senescence. It is unknown, however, whether the impaired clearance of debris is simply the result of the reduced number of phagocytes or if the dynamic activity of myeloid cells within the demyelinating plaque also declines with aging and this question is relevant to the proper design of therapeutics to mobilize myeloid cells for repair. Herein, we describe a high-resolution multiphoton ex vivo live imaging protocol that visualizes individual myelinated/demyelinated axons and lipid-containing myeloid cells to investigate the demyelinated lesion of aging female mice. We found that aging lesions have fewer myeloid cells and that these have reduced phagocytosis of myelin. Although the myeloid cells are actively migratory within the lesion of young mice and have protrusions that seem to survey the environment, this motility and surveillance is significantly reduced in aging mice. Our results emphasize the necessity of not only increasing the number of phagocytes, but also enhancing their activity once they are within demyelinated lesions. The high-resolution live imaging of demyelinated lesions can serve as a platform with which to discover pharmacological agents that rejuvenate intralesional remodeling that promotes the repair of plaques.SIGNIFICANCE STATEMENT The repair of myelin after injury depends on myeloid cells that clear debris and release growth factors. As organisms age, remyelination becomes less efficient correspondent with fewer myeloid cells that populate the lesions. It is unknown whether the dynamic activity of cells within lesions is also altered with age. Herein, using high-resolution multiphoton ex vivo live imaging with several novel features, we report that myeloid cells within demyelinated lesions of aging mice have reduced motility, surveillance, and phagocytic activity, suggesting an intralesional impairment that may contribute to the age-related decline in remyelination efficiency. Medications to stimulate deficient aging myeloid cells should not only increase their representation, but also enter into lesions to stimulate their activity.


Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats.

  • Berit E Powers‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2012‎

Remyelination following spinal cord injury (SCI) is thought to be incomplete; demyelination is reported to persist chronically and is proposed as a compelling therapeutic target. Yet most reports do not distinguish between the myelin status of intact axons and injury-severed axons whose proximal stumps persist but provide no meaningful function. We previously found full remyelination of spared, intact rubrospinal axons caudal to the lesion in chronic mouse SCI. However, the clinical concept of chronically demyelinated spared axons remains controversial. Since mouse models may have limitations in clinical translation, we asked whether the capacity for full remyelination is conserved in clinically relevant chronic rat SCI. We determined myelin status by examining paranodal protein distribution on anterogradely labeled, intact corticospinal and rubrospinal axons throughout the extent of the lesion. Demyelination was evident on proximal stumps of severed axons, but not on intact axons. For the first time, we demonstrate that a majority of intact axons exhibit remyelination (at least one abnormally short internode, <100 μm). Remarkably, shortened internodes were significantly concentrated at the lesion epicenter and individual axons were thinned by 23% compared with their rostral and caudal zones. Mathematical modeling predicted a 25% decrease in conduction velocity at the lesion epicenter due to short internodes and axonal thinning. In conclusion, we do not find a large chronically demyelinated population to target with remyelination therapies. Interventions may be better focused on correcting structural or molecular abnormalities of regenerated myelin.


Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis.

  • Thomas W Johnson‎ et al.
  • PloS one‎
  • 2016‎

Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS.


The CD33 short isoform is a gain-of-function variant that enhances Aβ1-42 phagocytosis in microglia.

  • Abhishek Bhattacherjee‎ et al.
  • Molecular neurodegeneration‎
  • 2021‎

CD33 is genetically linked to Alzheimer's disease (AD) susceptibility through differential expression of isoforms in microglia. The role of the human CD33 short isoform (hCD33m), preferentially encoded by an AD-protective CD33 allele (rs12459419T), is unknown. Here, we test whether hCD33m represents a loss-of-function or gain-of-function variant.


Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion.

  • Jason R Plemel‎ et al.
  • Science advances‎
  • 2020‎

Microglia and infiltrating macrophages are thought to orchestrate the central nervous system (CNS) response to injury; however, the similarities between these cells make it challenging to distinguish their relative contributions. We genetically labeled microglia and CNS-associated macrophages to distinguish them from infiltrating macrophages. Using single-cell RNA sequencing, we describe multiple microglia activation states, one of which was enriched for interferon associated signaling. Although blood-derived macrophages acutely infiltrated the demyelinated lesion, microglia progressively monopolized the lesion environment where they surrounded infiltrating macrophages. In the microglia-devoid sciatic nerve, the infiltrating macrophage response was sustained. In the CNS, the preferential proliferation of microglia and sparse microglia death contributed to microglia dominating the lesion. Microglia ablation reversed the spatial restriction of macrophages with the demyelinated spinal cord, highlighting an unrealized macrophages-microglia interaction. The restriction of peripheral inflammation by microglia may be a previously unidentified mechanism by which the CNS maintains its "immune privileged" status.


Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis.

  • A Max Hamilton‎ et al.
  • Scientific reports‎
  • 2019‎

Atrophy has become a clinically relevant marker of progressive neurodegeneration in multiple sclerosis (MS). To better understand atrophy, mouse models that feature atrophy along with other aspects of MS are needed. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to determine the extent of atrophy in a model of inflammation-associated central nervous system pathology. High-resolution magnetic resonance imaging (MRI) and atlas-based volumetric analysis were performed to measure brain regional volumes in EAE mice. EAE brains were larger at peak clinical disease (days 14-16) compared to controls, with affected regions including the cerebellum, hippocampus, and corpus callosum. Following peak clinical disease, EAE mice exhibited significant loss of volume at chronic long-term disease duration (day 66+). Atrophy was identified in both white and grey matter regions including the cerebral cortex, cerebellum, hippocampus, corpus callosum, basal forebrain, midbrain, optic tract, and colliculus. Histological analysis of the atrophied cortex, cerebellum, and hippocampus showed demyelination, and axonal/neuronal loss. We hypothesize this atrophy could be a result of inflammatory associated neurodegenerative processes, which may also be involved in MS. Using MRI and atlas-based volumetrics, EAE has the potential to be a test bed for treatments aimed at reducing progressive neurological deterioration in MS.


Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system.

  • Khalil S Rawji‎ et al.
  • Acta neuropathologica‎
  • 2020‎

Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9-12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis.


Social isolation produces a sex- and brain region-specific alteration of microglia state.

  • Alex P Vu‎ et al.
  • The European journal of neuroscience‎
  • 2023‎

Social isolation is a profound form of psychological stress that impacts the mental health of a large proportion of society. Other experimental models of stress have demonstrated a microglia response that serves either a protective or pathological function. However, the effect of adult social isolation on microglia has not been thoroughly investigated. We measured microglia territory, branching, end points and phagocytic-lysosomal activity in group housed C57Bl/6 mice and mice that were socially isolated for 2 weeks. Our results show that the dorsomedial hypothalamus and hippocampal CA2 region of adult male mice undergo increased microglia volume, territory and endpoints following social isolation, whereas females exhibit this increase in the hypothalamus only. Males exhibited decreases in the phagocytic-lysosomal marker CD68 in microglia in these regions, whereas females showed an increase in CD68 in the hypothalamus suggesting sexually dimorphic and brain region-specific change in microglia state in response to social isolation. The prefrontal cortex, central amygdala, nucleus accumbens shell and visual cortex did not exhibit changes in microglia structure in either male or female mice. These data show that microglia in different brain regions undergo a distinct response to social isolation which may account for changes in cognition and behaviour associated with this prevalent form of psychological stress.


Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.

  • Peggy Assinck‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.


Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury.

  • Jeff Biernaskie‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2007‎

Transplantation of exogenous cells is one approach to spinal cord repair that could potentially enhance the growth and myelination of endogenous axons. Here, we asked whether skin-derived precursors (SKPs), a neural crest-like precursor that can be isolated and expanded from mammalian skin, could be used to repair the injured rat spinal cord. To ask this question, we isolated and expanded genetically tagged murine SKPs and either transplanted them directly into the contused rat spinal cord or differentiated them into Schwann cells (SCs), and performed similar transplantations with the isolated, expanded SKP-derived SCs. Neuroanatomical analysis of these transplants 12 weeks after transplantation revealed that both cell types survived well within the injured spinal cord, reduced the size of the contusion cavity, myelinated endogenous host axons, and recruited endogenous SCs into the injured cord. However, SKP-derived SCs also provided a bridge across the lesion site, increased the size of the spared tissue rim, myelinated spared axons within the tissue rim, reduced reactive gliosis, and provided an environment that was highly conducive to axonal growth. Importantly, SKP-derived SCs provided enhanced locomotor recovery relative to both SKPs and forebrain subventricular zone neurospheres, and had no impact on mechanical or heat sensitivity thresholds. Thus, SKP-derived SCs provide an accessible, potentially autologous source of cells for transplantation into and treatment of the injured spinal cord.


Acute Dilation of Venous Sinuses in Animal Models of Mild Traumatic Brain Injury Detected Using 9.4T MRI.

  • Qandeel Shafqat‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Mild traumatic brain injury (mTBI) is a debilitating but extremely common form of brain injury that affects a substantial number of people each year. mTBI is especially common in children and adolescents. Our understanding of mTBI pathophysiology is limited, and there is currently no accepted marker for disease severity. A potential marker for disease severity may be cerebrovascular dysfunction. Recent findings have implicated cerebrovascular alteration as an important component of mTBI and suggest it contributes to the development of persistent, long-term symptoms. In this paper, we conducted two studies to investigate whether mTBI affects venous drainage patterns in the central nervous system using alterations in the size of venous sinuses as a marker of changes in drainage. Using a closed head vertical weight-drop model and a lateral impact injury model of mTBI, we imaged and quantified the size of three major draining vessels in the adolescent rat brain using 9.4T MRI. Areas and volumes were quantified in the superior sagittal sinus and left and right transverse sinuses using images acquired from T2w MRI in one study and post-gadolinium T1w MRI in another. Our results indicated that the three venous sinuses were significantly larger in mTBI rats as compared to sham rats 1-day post injury but recovered to normal size 2 weeks after. Acutely enlarged sinuses post-mTBI may indicate abnormal venous drainage, and this could be suggestive of a cerebrovascular response to trauma.


Aging-Exacerbated Acute Axon and Myelin Injury Is Associated with Microglia-Derived Reactive Oxygen Species and Is Alleviated by the Generic Medication Indapamide.

  • Nathan J Michaels‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2020‎

Age is a critical risk factor for many neurologic conditions, including progressive multiple sclerosis. Yet the mechanisms underlying the relationship are unknown. Using lysolecithin-induced demyelinating injury to the mouse spinal cord, we characterized the acute lesion and investigated the mechanisms of increased myelin and axon damage with age. We report exacerbated myelin and axon loss in middle-aged (8-10 months of age) compared with young (6 weeks of age) female C57BL/6 mice by 1-3 d of lesion evolution in the white matter. Transcriptomic analysis linked elevated injury to increased expression of Cybb, the gene encoding the catalytic subunit of NADPH oxidase gp91phox. Immunohistochemistry in male and female Cx3cr1CreER/+:Rosa26tdTom/+ mice for gp91phox revealed that the upregulation in middle-aged animals occurred primarily in microglia and not infiltrated monocyte-derived macrophages. Activated NADPH oxidase generates reactive oxygen species and elevated oxidative damage was corroborated by higher malondialdehyde immunoreactivity in lesions from middle-aged compared with young mice. From a previously conducted screen for generic drugs with antioxidant properties, we selected the antihypertensive CNS-penetrant medication indapamide for investigation. We report that indapamide reduced superoxide derived from microglia cultures and that treatment of middle-aged mice with indapamide was associated with a decrease in age-exacerbated lipid peroxidation, demyelination and axon loss. In summary, age-exacerbated acute injury following lysolecithin administration is mediated in part by microglia NADPH oxidase activation, and this is alleviated by the CNS-penetrant antioxidant, indapamide.SIGNIFICANCE STATEMENT Age is associated with an increased risk for the development of several neurologic conditions including progressive multiple sclerosis, which is represented by substantial microglia activation. We demonstrate that in the lysolecithin demyelination model in young and middle-aged mice, the latter group developed greater acute axonal and myelin loss attributed to elevated oxidative stress through NADPH oxidase in lineage-traced microglia. We thus used a CNS-penetrant generic medication used in hypertension, indapamide, as we found it to have antioxidant properties in a previous drug screen. Following lysolecithin demyelination in middle-aged mice, indapamide treatment was associated with decreased oxidative stress and axon/myelin loss. We propose indapamide as a potential adjunctive therapy in aging-associated neurodegenerative conditions such as Alzheimer's disease and progressive multiple sclerosis.


Microglia promote remyelination independent of their role in clearing myelin debris.

  • Charbel S Baaklini‎ et al.
  • Cell reports‎
  • 2023‎

Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss. While therapies exist to slow MS progression, no treatment currently exists for remyelination. Remyelination, linked to reduced disability in MS, relies on microglia and monocyte-derived macrophages (MDMs). This study aims to understand the role of microglia during remyelination by lineage tracing and depleting them. Microglial lineage tracing reveals that both microglia and MDMs initially accumulate, but microglia later dominate the lesion. Microglia and MDMs engulf equal amounts of inhibitory myelin debris, but after microglial depletion, MDMs compensate by engulfing more myelin debris. Microglial depletion does, however, reduce the recruitment and proliferation of oligodendrocyte progenitor cells (OPCs) and impairs their subsequent differentiation and remyelination. These findings underscore the essential role of microglia during remyelination and offer insights for enhancing this process by understanding microglial regulation of remyelination.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: