Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro.

  • A N van den Pol‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1992‎

Converging lines of evidence suggest that the hypothalamic suprachiasmatic nucleus (SCN) is the site of the endogenous biological clock controlling mammalian circadian rhythms. To study the calcium responses of the cellular components that make up the clock, computer-controlled digital video and confocal scanning laser microscopy were used with the Ca2+ indicator dye fluo-3 to examine dispersed SCN cells and SCN explants with repeated sampling over time. Ca2+ plays an important second messenger role in a wide variety of cellular mechanisms from gene regulation to electrical activity and neurotransmitter release, and may play a role in clock function and entrainment. SCN neurons and astrocytes showed an intracellular Ca2+ increase in response to glutamate and 5-HT, two major neurotransmitters in afferents to the SCN. Astrocytes showed a marked heterogeneity in their response to the serial perfusion of different transmitters; some responded to both 5-HT and glutamate, some to neither, and others to only one or the other. Under constant conditions, most neurons showed irregular temporal patterns of Ca2+ transients. Expression of regular neuronal oscillations could be blocked by the inhibitory transmitter GABA. Astrocytes, on the other hand, showed very regular rhythms of cytoplasmic Ca2+ concentrations with periods ranging from 7 to 20 sec. This periodic oscillation could be initiated by in vitro application of glutamate, the putative neurotransmitter conveying visual input to the SCN critical for clock entrainment. Long-distance communication between glial cells, seen as waves of fluorescence moving from cell to cell, probably through gap junctions, was induced by glutamate, 5-HT, and ATP. These waves increased the period length of cellular Ca2+ rises to 45-70 sec. Spontaneously oscillating cells were common in culture medium, serum, or rat cerebrospinal fluid, but rare in HEPES buffer. One source for cytoplasmic Ca2+ increases was an influx of extracellular Ca2+, as seen under depolarizing conditions in about 75% of the astroglia studied. All neurotransmitter-induced Ca2+ fluxes were not dependent on voltage changes, as Ca2+ oscillations could be initiated under both normal and depolarizing conditions. Since neurotransmitters could induce a Ca2+ rise in the absence of extracellular Ca2+, the mechanisms of ultradian oscillations appear to depend on cycles of intracellular Ca2+ fluxes from Ca(2+)-sequestering organelles into the cytoplasm, followed by a subsequent Ca2+ reduction. In the adult SCN, fewer astrocytes are found than neurons, yet astrocytes frequently surround glutamate-immunoreactive axons in synaptic contact with SCN dendrites, isolating neurons from each other while maintaining contact with other astrocytes by gap junctions.(ABSTRACT TRUNCATED AT 400 WORDS)


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: