Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 465 papers

Inactivation of West Nile virus, vaccinia virus and viral surrogates for relevant and emergent viral pathogens in plasma-derived products.

  • K M Remington‎ et al.
  • Vox sanguinis‎
  • 2004‎

Human plasma is the source of a wide variety of therapeutic proteins, yet it is also a potential source of viral contamination. Recent outbreaks of emergent viral pathogens, such as West Nile virus, and the use of live vaccinia virus as a vaccine have prompted a reassessment of the viral safety of plasma-derived products. The purpose of this study was to evaluate the efficacy of current viral inactivation methods for West Nile and vaccinia viruses and to reassess the use of model viruses to predict inactivation of similar viral pathogens.


Temporal effect of adrenocorticotrophic hormone on adrenal glucocorticoid steroidogenesis: involvement of the transducer of regulated cyclic AMP-response element-binding protein activity.

  • F Spiga‎ et al.
  • Journal of neuroendocrinology‎
  • 2011‎

The availability of active steroidogenic acute regulatory protein (StAR) and side-chain cleavage cytochrome P450 (P450scc) are rate-limiting steps for steroidogenesis. Transcription of StAR and P450scc genes depends on cyclic AMP-response element-binding protein (CREB) phosphorylation and CREB co-activator, transducer of regulated CREB activity (TORC), which is regulated by salt-inducible kinase 1 (SIK1). In the present study, we investigated the relationship between TORC activation and adrenocorticotrophic hormone (ACTH)-induced steroidogenesis in vivo, by examining the time-course of the effect of ACTH injection (4 ng, i.v.) on the transcriptional activity of StAR and P450scc genes and the nuclear accumulation of transducer of regulated CREB activity 2 (TORC2) in rat adrenal cortex. ACTH produced rapid and transient increases in plasma corticosterone, with maximal responses between 5 and 15 min, and a decrease to almost basal values at 30 min. StAR and P450scc hnRNA levels increased 15 min following ACTH and decreased toward basal values at 30 min. Concomitant with an increase in nuclear phospho-CREB, ACTH injection induced nuclear accumulation of TORC2, with maximal levels at 5 min and a return to basal values by 30 min. The decline of nuclear TORC2 was paralleled by increases in SIK1 hnRNA and mRNA 15 and 30 min after injection, respectively. The early rises in plasma corticosterone preceding StAR and P450scc gene transcription suggest that post-transcriptional and post-translational changes in StAR protein mediate the early steroidogenic responses. Furthermore, the direct temporal relationship between nuclear accumulation of TORC2 and the increase in transcription of steroidogenic proteins, implicates TORC2 in the physiological regulation of steroidogenesis in the adrenal cortex. The delayed induction of SIK1 suggests a role for SIK1 in the declining phase of steroidogenesis.


Deficiency in myosin light-chain phosphorylation causes cytokinesis failure and multipolarity in cancer cells.

  • Q Wu‎ et al.
  • Oncogene‎
  • 2010‎

Cancer cells often have unstable genomes and increased centrosome and chromosome numbers, which are an important part of malignant transformation in the most recent model of tumorigenesis. However, very little is known about divisional failures in cancer cells that may lead to chromosomal and centrosomal amplifications. In this study, we show that cancer cells often failed at cytokinesis because of decreased phosphorylation of the myosin regulatory light chain (MLC), a key regulatory component of cortical contraction during division. Reduced MLC phosphorylation was associated with high expression of myosin phosphatase and/or reduced myosin light-chain kinase levels. Furthermore, expression of phosphomimetic MLC largely prevented cytokinesis failure in the tested cancer cells. When myosin light-chain phosphorylation was restored to normal levels by phosphatase knockdown, multinucleation and multipolar mitosis were markedly reduced, resulting in enhanced genome stabilization. Furthermore, both overexpression of myosin phosphatase or inhibition of the myosin light-chain kinase in nonmalignant cells could recapitulate some of the mitotic defects of cancer cells, including multinucleation and multipolar spindles, indicating that these changes are sufficient to reproduce the cytokinesis failures we see in cancer cells. These results for the first time define the molecular defects leading to divisional failure in cancer cells.


Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases.

  • Y Liu‎ et al.
  • Oncogene‎
  • 2010‎

Activation of androgen receptor (AR) may have a role in the development of castration-resistant prostate cancer. Two intracellular tyrosine kinases, Ack1 (activated cdc42-associated kinase) and Src, phosphorylate and enhance AR activity and promote prostate xenograft tumor growth in castrated animals. However, the upstream signals that activate these kinases and lead to AR activation are incompletely characterized. In this study, we investigated AR phosphorylation in response to non-androgen ligand stimulation using phospho-specific antibodies. Treatment of LNCaP and LAPC-4 cells with epidermal growth factor (EGF), heregulin, Gas6 (ligand binding to the Mer receptor tyrosine kinase and activating Ack1 downstream), interleukin (IL)-6 or bombesin stimulated cell proliferation in the absence of androgen. Treatment of LNCaP and LAPC-4 cells with EGF, heregulin or Gas6 induced AR phosphorylation at Tyr-267, whereas IL-6 or bombesin treatment did not. AR phosphorylation at Tyr-534 was induced by treatment with EGF, IL-6 or bombesin, but not by heregulin or Gas6. Small interfering RNA-mediated knockdown of Ack1 or Src showed that Ack1 mediates heregulin- and Gas6-induced AR Tyr-267 phosphorylation, whereas Src mediates Tyr-534 phosphorylation induced by EGF, IL-6 and bombesin. Dasatinib, a Src inhibitor, blocked EGF-induced Tyr-534 phosphorylation. In addition, we showed that dasatinib also inhibited Ack1 kinase. Dasatinib inhibited heregulin-induced Ack1 kinase activity and AR Tyr-267 phosphorylation. In addition, dasatinib inhibited heregulin-induced AR-dependent reporter activity. Dasatinib also inhibited heregulin-induced expression of endogenous AR target genes. Dasatinib inhibited Ack1-dependent colony formation and prostate xenograft tumor growth in castrated mice. Interestingly, Ack1 or Src knockdown or dasatinib did not inhibit EGF-induced AR Tyr-267 phosphorylation or EGF-stimulated AR activity, suggesting the existence of an additional tyrosine kinase that phosphorylates AR at Tyr-267. These data suggest that specific tyrosine kinases phosphorylate AR at distinct sites and that dasatinib may exert antitumor activity in prostate cancer through inhibition of Ack1.


PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage.

  • E Bobrovnikova-Marjon‎ et al.
  • Oncogene‎
  • 2010‎

To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.


A novel interaction between HER2/neu and cyclin E in breast cancer.

  • E A Mittendorf‎ et al.
  • Oncogene‎
  • 2010‎

HER2/neu (HER2) and cyclin E are important prognostic indicators in breast cancer. As both are involved in cell cycle regulation we analyzed whether there was a direct interaction between the two. HER2 and cyclin E expression levels were determined in 395 breast cancer patients. Patients with HER2-overexpression and high levels of cyclin E had decreased 5-year disease-specific survival compared with low levels of cyclin E (14% versus 89%, P<0.0001). In vitro studies were performed in which HER2-mediated activity in HER2-overexpressing breast cancer cell lines was downregulated by transfection with HER2 small interfering RNA or treatment with trastuzumab. Cyclin E expression levels were determined by western blot analysis, and functional effects analyzed using kinase assays, MTT assays were used to assess cell viability as a marker of proliferation and fluorescence-activated cell sorting analysis was used to determine cell cycle profiles. Decreased HER2-mediated signaling resulted in decreased expression of cyclin E, particularly the low molecular weight (LMW) isoforms. Decreased HER2 and LMW cyclin E expression had functional consequences, including decreased cyclin E-associated kinase activity and decreased proliferation, because of increased apoptosis and an increased accumulation of cells in the G1 phase. In vivo studies performed in a HER2-overexpressing breast cancer xenograft model confirmed the effects of trastuzumab on cyclin E expression. Given the relationship between HER2 and cyclin E, in vitro clonogenic assays were performed to assess combination therapy targeting both proteins. Isobologram analysis showed a synergistic interaction between the two agents (trastuzumab targeting HER2 and roscovitine targeting cyclin E). Taken together, these studies show that HER2-mediated signaling effects LMW cyclin E expression, which in turn deregulates the cell cycle. LMW cyclin E has prognostic and predictive roles in HER2-overexpressing breast cancer, warranting further study of its potential as a therapeutic target.


Efficacy of adenovirally expressed soluble TRAIL in human glioma organotypic slice culture and glioma xenografts.

  • Y Liu‎ et al.
  • Cell death & disease‎
  • 2011‎

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in malignant cells, including gliomas, and is currently in anticancer clinical trials. However, the full-length and tagged forms of TRAIL, unlike the untagged ligand (soluble TRAIL (sTRAIL)), exhibits toxicity against normal cells. Here, we report the generation and testing of an adenovirus (AdsTRAIL) that expresses untagged sTRAIL in an intracranial xenograft model and a human glioma organotypic slice culture model. AdsTRAIL efficiently induced apoptosis in glioma cell lines, including those resistant to sTRAIL, but not in normal human astrocytes (NHAs). It inhibited anchorage-independent glioma growth and exerted a bystander effect in transwell assays. Intratumoral injections of AdsTRAIL in a rodent intracranial glioma model resulted in reduced tumor growth and improved survival compared with Ad-enhanced green fluorescent protein (EGFP)- or vehicle-treated controls without toxicity. Human glioma organotypic slices treated with AdsTRAIL demonstrated apoptosis induction and caspase activation.


Ras mutation cooperates with β-catenin activation to drive bladder tumourigenesis.

  • I Ahmad‎ et al.
  • Cell death & disease‎
  • 2011‎

Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-Ras(Q61L) or K-Ras(G12D)) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.


Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer.

  • M J Schiewer‎ et al.
  • Oncogene‎
  • 2009‎

Regulation of the androgen receptor (AR) is critical to prostate cancer (PCa) development; therefore, AR is the first line therapeutic target for disseminated tumors. Cell cycle-dependent accumulation of cyclin D1 negatively modulates the transcriptional regulation of AR through discrete, CDK4-independent mechanisms. The transcriptional corepressor function of cyclin D1 resides within a defined motif termed repressor domain (RD), and it was hypothesized that this motif could be utilized as a platform to develop new strategies for blocking AR function. Here, we demonstrate that expression of the RD peptide is sufficient to disrupt AR transcriptional activation of multiple, prostate-specific AR target genes. Importantly, these actions are sufficient to specifically inhibit S-phase progression in AR-positive PCa cells, but not in AR-negative cells or tested AR-positive cells of other lineages. As expected, impaired cell cycle progression resulted in a suppression of cell doubling. Additionally, cell death was observed in AR-positive cells that maintain androgen dependence and in a subset of castrate-resistant PCa cells, dependent on Akt activation status. Lastly, the ability of RD to cooperate with existing hormone therapies was examined, which revealed that RD enhanced the cellular response to an AR antagonist. Together, these data demonstrate that RD is sufficient to disrupt AR-dependent transcriptional and proliferative responses in PCa, and can enhance efficacy of AR antagonists, thus establishing the impetus for development of RD-based mimetics.


Characterization of C-C chemokine receptor subfamily in teleost fish.

  • Y Liu‎ et al.
  • Molecular immunology‎
  • 2009‎

Chemokines and their receptors play important roles in nervous and immune systems. Little information, however, exists concerning this gene family in teleost fish. In the present study, 17 C-C chemokine receptors genes were identified from Danio rerio, 9 from Gasterosteus aculeatus, 10 from Oryzias latipes, 8 from Takifugu rubripes and 5 from Tetraodon nigroviridis. Phylogenetic analysis showed that the orthologs to mammalian CCR6, 7, 8, 9 and CCRL1 receptors were evident in zebrafish, but the clear orthologs to mammalian CCR1, 2, 3, 4, 5 and 10 were not found in zebrafish. The gene structure of zebrafish CCR (zfCCR) was further analyzed. The open reading frame of zfCCR3-1, zfCCR3-3, zfCCR6-1, zfCCR6-2, zfCCR8-2 contain one exon, and two exons were identified for zfCCR2-1, zfCCR2-2, zfCCR4 and zfCCRL1-1, three exons for zfCCR3-2, zfCCR5 and zfCCR7, four exons for zfCCR8-1 and zfCCR9-1. The expression analyses showed that in zebrafish, most C-C chemokine receptor genes were expressed in fertilized eggs and oocytes, and all the receptor genes were expressed in larval stages. The zfCCR2-2, zfCCR3-1, zfCCR4 and zfCCR6-2 genes were expressed in all normal organs examined, whereas not for zfCCR2-1, zfCCR3-3, zfCCR6-1, zfCCR8-1, zfCCR9-2 and zfCCRL1-2. The expression of zfCCR3-2, zfCCR5, zfCCR7, zfCCR9-1 and zfCCRL1-1 were detected in the majority organs, and zfCCR8-2 and zfCCR8-3 detected only in brain. The differential expression pattern of different paralogues in organs may indicate their difference in function, which requires further investigation.


The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis.

  • Y Liu‎ et al.
  • Oncogene‎
  • 2010‎

The Pak4 serine/threonine kinase is highly expressed in many cancer cell lines and human tumors. Although several studies have addressed the role for Pak4 in transformation of fibroblasts, most human cancers are epithelial in origin. Epithelial cancers are associated not only with changes in cell growth but also with changes in the cellular organization within the three-dimensional (3D) architecture of the affected tissues. In this study we used immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the role for Pak4 in mammary tumorigenesis. iMMECs are an excellent model system for studying breast cancer, as they can grow in 3D-epithelial cell culture, in which they form acinar structures that recapitulate in vivo mammary morphogenesis. Although Pak4 is expressed at low levels in wild-type iMMECs, it is overexpressed in response to oncogenes, such as oncogenic Ras and Her2/neu. In this study we found that overexpression of Pak4 in iMMECs leads to changes in 3D acinar architecture that are consistent with oncogenic transformation. These include decreased central acinar cell death, abrogation of lumen formation, cell polarity alterations and deregulation of acinar size and cell number. Furthermore, iMMECs overexpressing Pak4 form tumors when implanted into the fat pads of athymic mice. Our results suggest that overexpression of Pak4 triggers events that are important for the transformation of mammary epithelial cells. This is likely to be owing to the ability of Pak4 to inhibit apoptosis and promote cell survival and thus subsequent uncontrolled proliferation, and to its ability to deregulate cell shape and polarity.


Modeling ductal carcinoma in situ: a HER2-Notch3 collaboration enables luminal filling.

  • C-R Pradeep‎ et al.
  • Oncogene‎
  • 2012‎

A large fraction of ductal carcinoma in situ (DCIS), a non-invasive precursor lesion of invasive breast cancer, overexpresses the HER2/neu oncogene. The ducts of DCIS are abnormally filled with cells that evade apoptosis, but the underlying mechanisms remain incompletely understood. We overexpressed HER2 in mammary epithelial cells and observed growth factor-independent proliferation. When grown in extracellular matrix as three-dimensional spheroids, control cells developed a hollow lumen, but HER2-overexpressing cells populated the lumen by evading apoptosis. We demonstrate that HER2 overexpression in this cellular model of DCIS drives transcriptional upregulation of multiple components of the Notch survival pathway. Importantly, luminal filling required upregulation of a signaling pathway comprising Notch3, its cleaved intracellular domain and the transcriptional regulator HES1, resulting in elevated levels of c-MYC and cyclin D1. In line with HER2-Notch3 collaboration, drugs intercepting either arm reverted the DCIS-like phenotype. In addition, we report upregulation of Notch3 in hyperplastic lesions of HER2 transgenic animals, as well as an association between HER2 levels and expression levels of components of the Notch pathway in tumor specimens of breast cancer patients. Therefore, it is conceivable that the integration of the Notch and HER2 signaling pathways contributes to the pathophysiology of DCIS.


Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease.

  • C Ge‎ et al.
  • Oncogene‎
  • 2016‎

The osteogenic transcription factor, Runx2, is abnormally expressed in prostate cancer (PCa) and associated with metastatic disease. During bone development, Runx2 is activated by signals known to be hyperactive in PCa including the RAS/MAP kinase pathway, which phosphorylates Runx2 on multiple serine residues including S301 and S319 (equivalent to S294 and S312 in human Runx2). This study examines the role of these phosphorylation sites in PCa. Runx2 was preferentially expressed in more invasive PCa cell lines (PC3>C4-2B>LNCaP). Furthermore, analysis using a P-S319-Runx2-specific antibody revealed that the ratio of P-S319-Runx2/total Runx2 as well as P-ERK/total ERK was highest in PC3 followed by C4-2B and LNCaP cells. These results were confirmed by immunofluorescence confocal microscopy, which showed a higher percentage of PC3 cells staining positive for P-S319-Runx2 relative to C4-2B and LNCaP cells. Phosphorylated Runx2 had an exclusively nuclear localization. When expressed in prostate cell lines, wild-type Runx2 increased metastasis-associated gene expression, in vitro migratory and invasive activity as well as in vivo growth of tumor cell xenografts. In contrast, S301A/S319A phosphorylation site mutations greatly attenuated these Runx2 responses. Analysis of tissue microarrays from 129 patients revealed strong nuclear staining with the P-S319-Runx2 antibody in primary PCas and metastases. P-S319-Runx2 staining was positively correlated with Gleason score and occurrence of lymph node metastases while little or no Runx2 phosphorylation was seen in normal prostate, benign prostate hyperplasia or prostatitis indicating that Runx2 S319 phosphorylation is closely associated with PCa induction and progression towards an aggressive phenotype. These studies establish the importance of Runx2 phosphorylation in prostate tumor growth and highlight its value as a potential diagnostic marker and therapeutic target.


Seasonal expression of androgen receptor, aromatase, and estrogen receptor alpha and beta in the testis of the wild ground squirrel (Citellus dauricus Brandt).

  • Q Li‎ et al.
  • European journal of histochemistry : EJH‎
  • 2015‎

The aim of this study was to investigate the seasonal expression of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) mRNA and protein by real-time PCR and immunohistochemistry in the wild ground squirrel (WGS) testes. Histologically, all types of spermatogenic cells including mature spermatozoa were identified in the breeding season (April), while spermatogonia and primary spermatocytes were observed in the nonbreeding season (June), and spermatogonia, primary spermatocytes and secondary spermatocytes were found in pre-hibernation (September). AR was present in Leydig cells, peritubular myoid cells and Sertoli cells in the breeding season and pre-hibernation with more intense staining in the breeding season, whereas AR was only found in Leydig cells in the nonbreeding season; P450arom was expressed in Leydig cells, Sertoli cells and germ cells during the breeding season, whereas P450arom was found in Leydig cells and Sertoli cells during pre-hibernation, but P450arom was not present in the nonbreeding season; stronger immunohistochemical signal for ERα was present in Sertoli cells and Leydig cells during the breeding season; ERβ was only expressed in Leydig cells of the breeding season. Consistent with the immunohistochemical results, the mean mRNA level of AR, P450arom, ERα and ERβ were higher in the testes of the breeding season when compared to pre-hibernation and the nonbreeding season. These results suggested that the seasonal changes in spermatogenesis and testicular recrudescence and regression process in WGSs might be correlated with expression levels of AR, P450arom and ERs, and that estrogen and androgen may play an important autocrine/paracrine role to regulate seasonal testicular function.


Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein.

  • Y Teng‎ et al.
  • Oncogene‎
  • 2016‎

AAA domain containing 3A (ATAD3A) is an integral mitochondrial membrane protein with unknown function, although we now show that high-level expression is associated with poor survival in breast cancer patients. Using a mass spectrometry approach we have demonstrated that ATAD3A interacts with the WASF3 metastasis-promoting protein. Knockdown of ATAD3A leads to decreased WASF3 protein levels in breast and colon cancer cells. Silencing ATAD3A also results in loss of both cell anchorage-independent growth and invasion and suppression of tumor growth and metastasis in vivo using immuno-compromised mice. HSP70 is responsible for stabilizing WASF3 in the cytoplasm, but inactivation of HSP70 does not lead to the loss of WASF3 stability at the mitochondrial membrane, where presumably it is protected through its interaction with ATAD3A. In response to endoplasmic reticulum (ER) stress, increases in the GRP78 protein level leads to increased WASF3 protein levels. We also show that ATAD3A was present in a WASF3-GRP78 complex, and suppression of GRP78 led to destabilization of WASF3 at the mitochondrial membrane, which was ATAD3A dependent. Furthermore, ATAD3A-mediated suppression of CDH1/E-cadherin occurs through its regulation of GRP78-mediated WASF3 stability. Proteolysis experiments using isolated mitochondria demonstrates the presence of the N-terminal end of WASF3 within the mitochondria, which is the interaction site with the N-terminal end of ATAD3A. It appears, therefore, that stabilization of WASF3 function occurs through its interaction with ATAD3A and GRP78, which may provide a bridge between the ER and mitochondria, allowing communication between the two organelles. These findings also suggest that pharmacologic inhibition of ATAD3A could be an effective therapeutic strategy to treat human cancer.


CTLA4 enhances the osteogenic differentiation of allogeneic human mesenchymal stem cells in a model of immune activation.

  • F Dai‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2015‎

Allogeneic mesenchymal stem cells (allo-MSCs) have recently garnered increasing interest for their broad clinical therapy applications. Despite this, many studies have shown that allo-MSCs are associated with a high rate of graft rejection unless immunosuppressive therapy is administered to control allo-immune responses. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is a co-inhibitory molecule expressed on T cells that mediates the inhibition of T-cell function. Here, we investigated the osteogenic differentiation potency of allo-MSCs in an activated immune system that mimics the in vivo allo-MSC grafting microenvironment and explored the immunomodulatory role of the helper T cell receptor CTLA4 in this process. We found that MSC osteogenic differentiation was inhibited in the presence of the activated immune response and that overexpression of CTLA4 in allo-MSCs suppressed the immune response and promoted osteogenic differentiation. Our results support the application of CTLA4-overexpressing allo-MSCs in bone tissue engineering.


Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer.

  • N D Peyser‎ et al.
  • Oncogene‎
  • 2016‎

Signal transducer and activator of transcription 3 (STAT3) overactivation is a common event in many cancers, including head and neck squamous cell carcinoma (HNSCC), where STAT3 represents a promising therapeutic target. HNSCC is not characterized by frequent kinase mutations, in contrast to some malignancies where mutational activation of kinases upstream of STAT3 is common. Instead, STAT3 may be activated by loss-of-function of negative regulators of STAT3, including by promoter hypermethylation of PTPRT. Here we first analyzed The Cancer Genome Atlas data and determined that the PTPRT promoter is frequently hypermethylated in several cancers, including HNSCC (60.1% of tumors analyzed) in association with downregulation of PTPRT mRNA expression and upregulation of pSTAT3 expression. These findings were confirmed in an independent cohort of HNSCC tumors by methylation-specific PCR and immunohistochemistry. We demonstrate that PTPRT promoter methylation and gene silencing is reversible in HNSCC cells, leading to PTPRT-specific downregulation of pSTAT3 expression. We further show that PTPRT promoter methylation is significantly associated with sensitivity to STAT3 inhibition in HNSCC cells, suggesting that PTPRT promoter methylation may serve as a predictive biomarker for responsiveness to STAT3 inhibitors in clinical development.


Short-term weight-centric effects of tea or tea extract in patients with metabolic syndrome: a meta-analysis of randomized controlled trials.

  • X Zhong‎ et al.
  • Nutrition & diabetes‎
  • 2015‎

To evaluate the weight-centric effect of tea or tea extract in participants with metabolic syndrome (MetS), we performed electronic searches in PubMed, EmBase and the Cochrane Library to identify eligible randomized controlled trials (RCTs) comparing tea or tea extract vs a control group. A direct meta-analysis using random-effects model was conducted to pool the standardized mean difference regarding body mass index (BMI), body weight and waist circumference. Study quality was assessed by using the Jadad scale. Pre-specified subgroup and sensitivity analyses were conducted to explore potential heterogeneity. A total of five RCTs involving 338 adult individuals were included. Given the high heterogeneity observed in the overall pooled analysis, we separated the included subjects into two subgroups. Ingestion of tea or tea extract significantly reduced BMI (subgroup 1: -1.60, 95% confidence interval (CI), -2.05 to -1.14; subgroup 2: -0.40, 95% CI, -0.69 to -0.12) and body weight (subgroup 1: -4.14, 95% CI, -4.85 to -3.43; subgroup 2: -0.35, 95% CI, -0.68 to -0.02). This meta-analysis suggests that tea or tea extract has favorable weight-centric effects in MetS patients. Additional large RCTs specifically designed to evaluate the effect on anthropometric measurements are needed to further confirm these findings.


Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8.

  • Y Jiang‎ et al.
  • Oncogene‎
  • 2015‎

Epstein-Barr virus (EBV) causes human lymphoid malignancies, and the EBV product latent membrane protein 1 (LMP1) has been identified as an oncogene in epithelial carcinomas such as nasopharyngeal carcinoma (NPC). EBV can epigenetically reprogram lymphocyte-specific processes and induce cell immortalization. However, the interplay between LMP1 and the NPC host cell remains largely unknown. Here, we report that LMP1 is important to establish the Hox gene expression signature in NPC cell lines and tumor biopsies. LMP1 induces repression of several Hox genes in part via stalling of RNA polymerase II (RNA Pol II). Pol II stalling can be overcome by irradiation involving the epigenetic regulator TET3. Furthermore, we report that HoxC8, one of the genes silenced by LMP1, has a role in tumor growth. Ectopic expression of HoxC8 inhibits NPC cell growth in vitro and in vivo, modulates glycolysis and regulates the expression of tricarboxylic acid (TCA) cycle-related genes. We propose that viral latency products may repress via stalling key mediators that in turn modulate glycolysis.


5-HT1B autoreceptors differentially modulate the expression of conditioned fear in a circuit-specific manner.

  • Y Liu‎ et al.
  • Neuroscience‎
  • 2015‎

Located in the nerve terminals of serotonergic neurons, 5-HT1B autoreceptors are poised to modulate synaptic 5-HT levels with precise temporal and spatial control, and play an important role in various emotional behaviors. This study characterized two novel, complementary viral vector strategies to investigate the contribution of 5-HT1B autoreceptors to fear expression, displayed as freezing, during contextual fear conditioning. Increased expression of 5-HT1B autoreceptors throughout the brain significantly decreased fear expression in both wild-type (WT) and 5-HT1B knockout (1BKO) mice when receptor levels were increased with a cell-type-specific herpes simplex virus (HSV) vector injected into the dorsal raphe nucleus (DRN). Additional studies used an intersectional viral vector strategy, in which an adeno-associated virus containing a double-floxed inverted sequence for the 5-HT1B receptor (AAV-DIO-1B) was combined with the retrogradely transported canine adenovirus-2 expressing Cre (CAV-Cre) in order to increase 5-HT1B autoreceptor expression only in neurons projecting from the DRN to the amygdala. Surprisingly, selective expression of 5-HT1B autoreceptors in just this circuit led to an increase in fear expression in WT, but not 1BKO, mice. These results suggest that activation of 5-HT1B autoreceptors throughout the brain may have an overall effect of attenuating fear expression, but activation of subsets of 5-HT1B autoreceptors in particular brain regions, reflecting distinct projections of serotonergic neurons from the DRN, may have disparate contributions to the ultimate response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: