Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Allicin prevents oxidized low-density lipoprotein-induced endothelial cell injury by inhibiting apoptosis and oxidative stress pathway.

  • Xiaoshu Chen‎ et al.
  • BMC complementary and alternative medicine‎
  • 2016‎

Vascular endothelial apoptosis is significantly associated with atherosclerosis and cardiovascular diseases, for which oxidized low-density lipoprotein (ox-LDL) is a major risk factor. Allicin, the primary active ingredient of garlic, has been found to have cardiovascular protective effect by changing the fatty-acid composition, but its effect on ox-LDL-induced vascular endothelial injury remains unclear. We investigated the protective effect of allicin on cell viability, LDH release, apoptosis and apoptotic signaling in human umbilical vein endothelial cells (HUVECs).


Comprehensive Transcriptome and Metabolome Analyses Reveal Primary Molecular Regulation Pathways Involved in Peanut under Water and Nitrogen Co-Limitation.

  • Hong Ding‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The yield and quality of peanut (Arachis hypogaea L.), an oil crop planted worldwide, are often limited by drought stress (DS) and nitrogen (N) deficiency. To investigate the molecular mechanism by which peanut counteracts DS and N deficiency, we conducted comprehensive transcriptomic and metabolomic analyses of peanut leaves. Herein, 829 known differentially accumulated metabolites, 324 differentially expressed transcription factors, and 5294 differentially expressed genes (DEGs) were identified under different water and N conditions. The transcriptome analysis demonstrated that drought-related DEGs were predominantly expressed in "glycolysis/gluconeogenesis" and "glycerolipid metabolism", while N-deficiency-related DEGs were mainly expressed in starch and sucrose metabolism, as well as in the biosynthesis of amino acid pathways. The biosynthesis, transport, and catabolism of secondary metabolites accounted for a large proportion of the 1317 DEGs present in water and N co-limitation. Metabolomic analysis showed that the metabolic accumulation of these pathways was significantly dependent on the stress conditions. Additionally, the roles of metabolites and genes in these pathways, such as the biosynthesis of amino acids and phenylpropanoid biosynthesis under different stress conditions, were discussed. The results demonstrated that different genes, metabolic pathways, and metabolites were related to DS and N deficiency. Thus, this study elucidates the metabolic pathways and functional genes that can be used for the improvement of peanut resistance to abiotic stress.


Specificity of mRNA Folding and Its Association with Evolutionarily Adaptive mRNA Secondary Structures.

  • Gongwang Yu‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2021‎

The secondary structure is a fundamental feature of both non-coding RNAs (ncRNAs) and messenger RNAs (mRNAs). However, our understanding of the secondary structures of mRNAs, especially those of the coding regions, remains elusive, likely due to translation and the lack of RNA-binding proteins that sustain the consensus structure like those binding to ncRNAs. Indeed, mRNAs have recently been found to adopt diverse alternative structures, but the overall functional significance remains untested. We hereby approach this problem by estimating the folding specificity, i.e., the probability that a fragment of an mRNA folds back to the same partner once refolded. We show that the folding specificity of mRNAs is lower than that of ncRNAs and exhibits moderate evolutionary conservation. Notably, we find that specific rather than alternative folding is likely evolutionarily adaptive since specific folding is frequently associated with functionally important genes or sites within a gene. Additional analysis in combination with ribosome density suggests the ability to modulate ribosome movement as one potential functional advantage provided by specific folding. Our findings reveal a novel facet of the RNA structurome with important functional and evolutionary implications and indicate a potential method for distinguishing the mRNA secondary structures maintained by natural selection from molecular noise.


Codon-by-codon modulation of translational speed and accuracy via mRNA folding.

  • Jian-Rong Yang‎ et al.
  • PLoS biology‎
  • 2014‎

Rapid cell growth demands fast protein translational elongation to alleviate ribosome shortage. However, speedy elongation undermines translational accuracy because of a mechanistic tradeoff. Here we provide genomic evidence in budding yeast and mouse embryonic stem cells that the efficiency-accuracy conflict is alleviated by slowing down the elongation at structurally or functionally important residues to ensure their translational accuracies while sacrificing the accuracy for speed at other residues. Our computational analysis in yeast with codon resolution suggests that mRNA secondary structures serve as elongation brakes to control the speed and hence the fidelity of protein translation. The position-specific effect of mRNA folding on translational accuracy is further demonstrated experimentally by swapping synonymous codons in a yeast transgene. Our findings explain why highly expressed genes tend to have strong mRNA folding, slow translational elongation, and conserved protein sequences. The exquisite codon-by-codon translational modulation uncovered here is a testament to the power of natural selection in mitigating efficiency-accuracy conflicts, which are prevalent in biology.


Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect.

  • Gongwang Yu‎ et al.
  • Nature communications‎
  • 2023‎

The transcriptional intermediates of RNAs fold into secondary structures with multiple regulatory roles, yet the details of such cotranscriptional RNA folding are largely unresolved in eukaryotes. Here, we present eSPET-seq (Structural Probing of Elongating Transcripts in eukaryotes), a method to assess the cotranscriptional RNA folding in Saccharomyces cerevisiae. Our study reveals pervasive structural transitions during cotranscriptional folding and overall structural similarities between nascent and mature RNAs. Furthermore, a combined analysis with genome-wide R-loop and mutation rate approximations provides quantitative evidence for the antimutator effect of nascent RNA folding through competitive inhibition of the R-loops, known to facilitate transcription-associated mutagenesis. Taken together, we present an experimental evaluation of cotranscriptional folding in eukaryotes and demonstrate the antimutator effect of nascent RNA folding. These results suggest genome-wide coupling between the processing and transmission of genetic information through RNA folding.


Nascent RNA folding mitigates transcription-associated mutagenesis.

  • Xiaoshu Chen‎ et al.
  • Genome research‎
  • 2016‎

Transcription is mutagenic, in part because the R-loop formed by the binding of the nascent RNA with its DNA template exposes the nontemplate DNA strand to mutagens and primes unscheduled error-prone DNA synthesis. We hypothesize that strong folding of nascent RNA weakens R-loops and hence decreases mutagenesis. By a yeast forward mutation assay, we show that strengthening RNA folding and reducing R-loop formation by synonymous changes in a reporter gene can lower mutation rate by >80%. This effect is diminished after the overexpression of the gene encoding RNase H1 that degrades the RNA in a DNA-RNA hybrid, indicating that the effect is R-loop-dependent. Analysis of genomic data of yeast mutation accumulation lines and human neutral polymorphisms confirms the generality of these findings. This mechanism for local protection of genome integrity is of special importance to highly expressed genes because of their frequent transcription and strong RNA folding, the latter also improves translational fidelity. As a result, strengthening RNA folding simultaneously curtails genotypic and phenotypic mutations.


The ortholog conjecture is untestable by the current gene ontology but is supported by RNA sequencing data.

  • Xiaoshu Chen‎ et al.
  • PLoS computational biology‎
  • 2012‎

The ortholog conjecture posits that orthologous genes are functionally more similar than paralogous genes. This conjecture is a cornerstone of phylogenomics and is used daily by both computational and experimental biologists in predicting, interpreting, and understanding gene functions. A recent study, however, challenged the ortholog conjecture on the basis of experimentally derived Gene Ontology (GO) annotations and microarray gene expression data in human and mouse. It instead proposed that the functional similarity of homologous genes is primarily determined by the cellular context in which the genes act, explaining why a greater functional similarity of (within-species) paralogs than (between-species) orthologs was observed. Here we show that GO-based functional similarity between human and mouse orthologs, relative to that between paralogs, has been increasing in the last five years. Further, compared with paralogs, orthologs are less likely to be included in the same study, causing an underestimation in their functional similarity. A close examination of functional studies of homologs with identical protein sequences reveals experimental biases, annotation errors, and homology-based functional inferences that are labeled in GO as experimental. These problems and the temporary nature of the GO-based finding make the current GO inappropriate for testing the ortholog conjecture. RNA sequencing (RNA-Seq) is known to be superior to microarray for comparing the expressions of different genes or in different species. Our analysis of a large RNA-Seq dataset of multiple tissues from eight mammals and the chicken shows that the expression similarity between orthologs is significantly higher than that between within-species paralogs, supporting the ortholog conjecture and refuting the cellular context hypothesis for gene expression. We conclude that the ortholog conjecture remains largely valid to the extent that it has been tested, but further scrutiny using more and better functional data is needed.


Bidirectional Genetic Control of Phenotypic Heterogeneity and Its Implication for Cancer Drug Resistance.

  • Ning Mo‎ et al.
  • Molecular biology and evolution‎
  • 2021‎

Negative genetic regulators of phenotypic heterogeneity, or phenotypic capacitors/stabilizers, elevate population average fitness by limiting deviation from the optimal phenotype and increase the efficacy of natural selection by enhancing the phenotypic differences among genotypes. Stabilizers can presumably be switched off to release phenotypic heterogeneity in the face of extreme or fluctuating environments to ensure population survival. This task could, however, also be achieved by positive genetic regulators of phenotypic heterogeneity, or "phenotypic diversifiers," as shown by recently reported evidence that a bacterial divisome factor enhances antibiotic resistance. We hypothesized that such active creation of phenotypic heterogeneity by diversifiers, which is functionally independent of stabilizers, is more common than previously recognized. Using morphological phenotypic data from 4,718 single-gene knockout strains of Saccharomyces cerevisiae, we systematically identified 324 stabilizers and 160 diversifiers and constructed a bipartite network between these genes and the morphological traits they control. Further analyses showed that, compared with stabilizers, diversifiers tended to be weaker and more promiscuous (regulating more traits) regulators targeting traits unrelated to fitness. Moreover, there is a general division of labor between stabilizers and diversifiers. Finally, by incorporating NCI-60 human cancer cell line anticancer drug screening data, we found that human one-to-one orthologs of yeast diversifiers/stabilizers likely regulate the anticancer drug resistance of human cancer cell lines, suggesting that these orthologs are potential targets for auxiliary treatments. Our study therefore highlights stabilizers and diversifiers as the genetic regulators for the bidirectional control of phenotypic heterogeneity as well as their distinct evolutionary roles and functional independence.


Protective mechanism of SIRT1 on Hcy-induced atrial fibrosis mediated by TRPC3.

  • Lu Han‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

High plasma levels of homocysteine (Hcy) are regarded as a risk factor for atrial fibrillation (AF), which is closely associated with the pathological consequence of atrial fibrosis and can lead to heart failure with a high mortality rate; here, we show that atrial fibrosis is mediated by the relationship between canonical transient receptor potential 3 (TRPC3) channels and sirtuin type 1 (SIRT1) under the stimulation of Hcy. The left atrial appendage was obtained from patients with either sinus rhythm (SR) or AF and used to evaluate the relationship between the concentration of Hcy and a potential mechanism of cardiac fibrosis mediated by TRPC3 and SIRT1. We next performed transverse aortic constriction (TAC) in mouse to investigate the relationship. The mechanisms underlying atrial fibrosis involving TRPC3 and SIRT1 proteins were explored by co-IP, BLI and lentivirus transfection experiments. qPCR and WB were performed to analyse gene and protein expression, respectively. The higher level of atrial fibrosis was observed in the HH mouse group with a high Hcy diet. Such results suggest that AF patients may be more susceptible to atrial fibrosis and possess a high probability of progressing to hyperhomocysteinemia. Moreover, our findings are consistent with the hypothesis that TRPC3 channel up-regulation leads to abnormal accumulation of collagen, with the down-regulation of SIRT1 as an aetiological factor of high Hcy, which in turn predisposes to atrial fibrosis and strongly enhances the possibility of AF.


Sacubitril/Valsartan Reduces Fibrosis and Alleviates High-Salt Diet-Induced HFpEF in Rats.

  • Wenchao Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Previous studies have confirmed the clinical efficacy of sacubitril/valsartan (Sac/Val) for the treatment of heart failure with reduced ejection fraction (HFrEF). However, the role of Sac/Val in heart failure with preserved ejection fraction (HFpEF) remains unclear. Sac/Val is a combination therapeutic medicine comprising sacubitril and valsartan that acts as a first angiotensin receptor blocker and neprilysin inhibitor (angiotensin-receptor neprilysin inhibitor (ARNI)). Here, we investigated the role of Sac/Val in high-salt diet-induced HFpEF coupled with vascular injury as well as the underlying mechanism. Rats were fed with high-salt feed, followed by intragastric administration of Sac/Val (68 mg/kg; i.g.). The results of functional tests revealed that a high-salt diet caused pathological injuries in the heart and vascular endothelium, which were significantly reversed by treatment with Sac/Val. Moreover, Sac/Val significantly decreased the levels of fibrotic factors, including type I collagen and type Ⅲ collagen, thus, reducing the ratio of MMP2/TIMP2 while increasing Smad7 levels. Further investigation suggested that Sac/Val probably reversed the effects of high-salt diet-induced HFpEF by inhibiting the activation of the TGF-β1/Smad3 signaling pathway. Thus, treatment with Sac/Val effectively alleviated the symptoms of high-salt diet-induced HFpEF, probably by inhibiting fibrosis via the TGF-β1/Smad3 signaling pathway, supporting the therapeutic potential of Sac/Val for the treatment of HFpEF.


Phylogenetic Comparative Analysis of Single-Cell Transcriptomes Reveals Constrained Accumulation of Gene Expression Heterogeneity during Clonal Expansion.

  • Feng Chen‎ et al.
  • Molecular biology and evolution‎
  • 2023‎

In the same way that a phylogeny summarizes the evolutionary history of species, a cell lineage tree describes the process of clonal expansion, in which gene expression differences between cells naturally accrue as a result of stochastic partitioning and imperfect expression control. How is functional homeostasis, a key factor in the biological function of any population of cells, maintained in the face of such continuous accumulation of transcriptomic heterogeneity remains largely unresolved. To answer this question, we experimentally determined the single-cell transcriptomes and lineage relationships of up to 50% cells in single-HEK293-seeded colonies. Phylogenetic comparative analyses of the single-cell transcriptomes on the cell lineage tree revealed three lines of evidence for the constrained accumulation of transcriptome heterogeneity among cells, including rapid saturation of transcriptomic heterogeneity upon four cell divisions, reduced expression differences within subtrees closer to expression boundaries, and cofluctuations among genes. Our analyses showcased the applicability of phylogenetic comparative methods in cell lineage trees, demonstrated the constrained accumulation of transcriptomic heterogeneity, and provided novel insight into the functional homeostasis of cell populations.


Reference equations for the six-minute walking distance in obese Chinese subjects more than 40 years old.

  • Jia Zhang‎ et al.
  • Eating and weight disorders : EWD‎
  • 2022‎

Studies have shown that the reference equations for the six-minute walking distance (6MWD), which were mainly derived from healthy, normal-weight people, are not suitable for individuals with obesity. The main purpose of this study was to establish reference equations for the 6MWD in obese Chinese subjects.


Dosage sensitivity of X-linked genes in human embryonic single cells.

  • Jian-Rong Yang‎ et al.
  • BMC genomics‎
  • 2019‎

During the evolution of mammalian sex chromosomes, the degeneration of Y-linked homologs has led to a dosage imbalance between X-linked and autosomal genes. The evolutionary resolution to such dosage imbalance, as hypothesized by Susumu Ohno fifty years ago, should be doubling the expression of X-linked genes. Recent studies have nevertheless shown that the X to autosome expression ratio equals ~ 1 in haploid human parthenogenetic embryonic stem (pES) cells and ~ 0.5 in diploid pES cells, suggesting no doubled expression for X-linked genes and refuting Ohno's hypothesis.


Reduced intrinsic DNA curvature leads to increased mutation rate.

  • Chaorui Duan‎ et al.
  • Genome biology‎
  • 2018‎

Mutation rates vary across the genome. Many trans factors that influence mutation rates have been identified, as have specific sequence motifs at the 1-7-bp scale, but cis elements remain poorly characterized. The lack of understanding regarding why different sequences have different mutation rates hampers our ability to identify positive selection in evolution and to identify driver mutations in tumorigenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: