Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 papers out of 566 papers

MCPIP1, alias Regnase-1 binds and cleaves mRNA of C/EBPβ.

  • Barbara Lipert‎ et al.
  • PloS one‎
  • 2017‎

CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor controlling a broad range of genes essential for homeostasis, including genes related to immune functions, inflammation, metabolism and growth. Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) also called as Regnase-1 is an RNase and has been shown to decrease the stability of short-lived transcripts coding for inflammation-related proteins, including IL-1β, IL-6, IL-2, IL-8, IL-12b, IER-3, c-Rel. We found previously that the half-life of the C/EBPβ transcript is regulated by MCPIP. To understand the mechanism driving down-regulation of C/EBPβ by MCPIP1, we applied an in vitro cleavage assay, followed by a luciferase-reporter assay and RNA immunoprecipitation (RIP). We demonstrated that MCPIP1 recognizes regions of the 3'UTR of C/EBPβ mRNA and promotes its decay by introducing direct endonucleolytic cleavage.


Examination of Novel Immunomodulatory Effects of L-Sulforaphane.

  • Nadia Mazarakis‎ et al.
  • Nutrients‎
  • 2021‎

The dietary isothiocyanate L-sulforaphane (LSF), derived from cruciferous vegetables, is reported to have several beneficial biological properties, including anti-inflammatory and immunomodulatory effects. However, there is limited data on how LSF modulates these effects in human immune cells. The present study was designed to investigate the immunomodulatory effects of LSF (10 µM and 50 µM) on peripheral blood mononuclear cell (PBMC) populations and cytokine secretion in healthy adult volunteers (n = 14), in the presence or absence of bacterial (lipopolysaccharide) and viral (imiquimod) toll-like receptor (TLRs) stimulations. Here, we found that LSF reduced pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and chemokines monocyte chemoattractant protein (MCP)-1 irrespective of TLR stimulations. This result was associated with LSF significantly reducing the proportion of natural killer (NK) cells and monocytes while increasing the proportions of dendritic cells (DCs), T cells and B cells. We found a novel effect of LSF in relation to reducing cluster of differentiation (CD) 14+ monocytes while simultaneously increasing monocyte-derived DCs (moDCs: lineage-Human Leukocyte Antigen-DR isotype (HLA-DR)+CD11blow-high CD11chigh). LSF was also shown to induce a 3.9-fold increase in the antioxidant response element (ARE) activity in a human monocyte cell line (THP-1). Our results provide important insights into the immunomodulatory effects of LSF, showing in human PBMCs an ability to drive differentiation of monocytes towards an immature monocyte-derived dendritic cell phenotype with potentially important biological functions. These findings provide insights into the potential role of LSF as a novel immunomodulatory drug candidate and supports the need for further preclinical and phase I clinical studies.


A decrease in functional microbiomes represented as Faecalibacterium affects immune homeostasis in long-term stable liver transplant patients.

  • Soon Kyu Lee‎ et al.
  • Gut microbes‎
  • 2022‎

LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.


A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression.

  • Zhihong Chen‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1β in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1β/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1β/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1β, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1β could be considered as an effective therapy specifically for proneural GBM.


Attenuation of diabetic kidney injury in DPP4-deficient rats; role of GLP-1 on the suppression of AGE formation by inducing glyoxalase 1.

  • Mithun Kumer Sarker‎ et al.
  • Aging‎
  • 2020‎

Dipeptidyl peptidase 4 (DPP4) inactivates incretin hormone glucagon-like peptide-1. DPP4 inhibitors may exert beneficial effects on diabetic nephropathy (DN) independently of glycemic control; however, the mechanisms underlying are not fully understood. Here, we investigated the mechanisms of the beneficial effects of DPP4 inhibition on DN using DPP4-deficient (DPP4-def) rats and rat mesangial cells.Blood glucose and HbA1c significantly increased by streptozotocin (STZ) and no differences were between WT-STZ and DPP4-def-STZ. The albumin level in urine decreased significantly and the albumin/creatinine ratio decreased slightly in DPP4-def-STZ. The glomerular volume in DPP4-def-STZ significantly decreased compared with that of WT-STZ. Advanced glycation end products formation, receptor for AGE (RAGE) protein expression, and its downstream inflammatory cytokines and fibrotic factors in kidney tissue, were significantly suppressed in the DPP4-def-STZ compared to the WT-STZ with increasing glyoxalase-1 (GLO-1) expression responsible for the detoxification of methylglyoxal (MGO). In vitro, exendin-4 suppressed MGO-induced AGEs production by enhancing the expression of GLO-1 and nuclear factor-erythroid 2 p45 subunit-related factor 2, resulting in decreasing pro-inflammatory cytokine levels. This effect was abolished by GLO-1 siRNA.Our data suggest that endogenously increased GLP-1 in DPP4-deficient rats contributes to the attenuation of DN partially by regulating AGEs formation via upregulation of GLO-1 expression.


Inhibition of miR-155 attenuates abdominal aortic aneurysm in mice by regulating macrophage-mediated inflammation.

  • Zhidong Zhang‎ et al.
  • Bioscience reports‎
  • 2018‎

The aim of the present study was to identify abdominal aortic aneurysms (AAA)-associated miR-155 contributing to AAA pathology by regulating macrophage-mediated inflammation. Angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mice and THP-1 cells model of miR-155 overexpression and deficiency were used in the experiments. The expression of miR-155 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cytokines were evaluated using enzyme-linked immunoabsorbent assay (ELISA). Western blotting was used to measure the levels of MMP-2, MMP-9, iNOS, and monocyte chemoattractant protein (MCP)-1 proteins. Immunostaining and transwell were used to determine CD68, elastic collagen, proliferation, and migration of vascular smooth muscle cells (VSMCs). The results showed that miR-155 and cytokines were up-regulated in AAA patients or ApoE-/- mice. Overexpression of miR-155 enhanced MMP-2, MMP-9, iNOS, and MCP-1 levels, and stimulated the proliferation and migration of VSMCs. Meanwhile, inhibition of miR-155 had the opposite effect. In addition, histology demonstrated accumulation of CD68 and elastic collagen-positive areas significantly decreased in miR-155 antagomir injection group. In conclusion, the results of the present study suggest that inhibiting miR-155 is crucial to prevent the development of AAA by regulating macrophage inflammation.


Chemoprotective effects of inositol hexaphosphate against cyclophosphamide-induced testicular damage in rats.

  • Maha I Alkhalaf‎ et al.
  • Scientific reports‎
  • 2020‎

Cyclophosphamide (CP) is commonly used as an anticancer agent but has been associated with high toxicity in several animal organs, including the testes. Inositol hexaphosphate (IP6) is a polyphosphorylated carbohydrate that is present in foods with high fibre contents and has a wide range of essential physiological and pathological activities. Thus, we estimated the defensive effects of IP6 against CP-related testicular toxicity in rats. Sperm counts, motilities, viabilities and abnormalities and levels of testosterone, luteinising hormone and follicle-stimulating hormone were evaluated. Testicle specimens were also processed for histological and biochemical analyses, including determinations of malondialdehyde, nitric oxide, total antioxidant capacity, alkaline phosphatase, acid phosphatase, gamma glutamyl transferase, ß-glucuronidase, c-reactive protein, monocyte chemoattractant protein and leukotriene-4 and in comet assays. CP treatments were associated with deleterious histopathological, biochemical and genetic changes in rat testicles, and these were ameliorated by IP6 supplements in drinking water.


Oxidative stress and delayed-onset muscle damage after exercise.

  • Wataru Aoi‎ et al.
  • Free radical biology & medicine‎
  • 2004‎

Reactive oxygen species (ROS) produced during exercise may be involved in delayed-onset muscle damage related to inflammation. To investigate this hypothesis, we studied whether oxidative stress increases nuclear translocation of nuclear factor-kappaB and chemokine expression in skeletal muscle using myotube L6 cells. We also assessed whether prolonged acute exercise could increase these parameters in rats. In L6 cells, H(2)O(2) induced nuclear translocation of p65 and increased the expression of cytokine-induced neutrophil chemoattractant-1 (CINC-1) and monocyte chemoattractant protein-1 (MCP-1), whereas preincubation with alpha-tocopherol limited the increase in these proteins. Sprague Dawley rats were divided into the following groups: rested control, exercised, rested with a high alpha-tocopherol diet, and exercised with a high alpha-tocopherol diet. After 3 weeks of acclimation, both exercise groups ran on a treadmill at 25 m/min for 60 min. Exercise increased nuclear p65, CINC-1, and MCP-1 in gastrocnemius muscle cells, but these changes were ameliorated by the high alpha-tocopherol diet. Increases in myeloperoxidase and thiobarbituric acid-reactive substrates were ameliorated by a high alpha-tocopherol diet, as were the histological changes. Neutrophil activity was not altered by either exercise or a high alpha-tocopherol diet. These results indicate that delayed-onset muscle damage induced by prolonged exercise is partly related to inflammation via phagocyte infiltration caused by ROS and that alpha-tocopherol (an antioxidant) can attenuate such inflammatory changes.


Antioxidant and Anti-Inflammatory Activities of Endemic Plants of the Australian Wet Tropics.

  • Karma Yeshi‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

Plants have been a vital source of natural antioxidants since ancient times. Plants growing under various abiotic stress conditions often produce more defensive secondary metabolites such as phenolics, flavonoids, and terpenoids during adaptation to the environment. Many of these secondary metabolites are known to possess antioxidant and anti-inflammatory properties. This study tested seven plants sourced from the mountaintop areas (above 1000 m elevation) of Mount Lewis National Park (falls under the Wet Tropics of Queensland), Australia, for their antioxidant and anti-inflammatory activities. Of the seven studied plants, hydroethanolic extracts of six plants (Leptospermum wooroonooran, Ceratopetalum hylandii, Linospadix apetiolatus, Garcinia brassii, Litsea granitica, and Polyscias willmottii) showed high 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity in a dose-dependent (25-1000 μg/mL) manner. At the highest concentration of 1 mg/mL, the DPPH free radical scavenged percentage varied between 75.4% and 92.3%. Only the species Alyxia orophila was inactive in the DPPH free radical scavenging assay. Pseudo-IC50 values of the extracts' ferric reducing antioxidant power (FRAP) based on dose-response curves showed a significant positive correlation with total phenolic content. Five out of the seven plants, namely G. brassii, C. hylandii, L. apetiolatus, L. wooroonooran, and A. orophila, showed inhibitory effects on the secretion of proinflammatory cytokines, tumour necrosis factor (TNF), and interleukins (IL)-23 in a lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMCs) assay. The results of this study demonstrate the value of tropical mountaintop plants in the biodiscovery of antioxidant and anti-inflammatory lead compounds.


Renal Dopamine Oxidation and Inflammation in High Salt Fed Rats.

  • Anees A Banday‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background Oxidative stress and high salt intake could be independent or intertwined risk factors in the origin of hypertension. Kidneys are the major organ to regulate sodium homeostasis and blood pressure and the renal dopamine system plays a pivotal role in sodium regulation during sodium replete conditions. Oxidative stress has been implicated in renal dopamine dysfunction and development of hypertension, especially in salt-sensitive animal models. Here we show the nexus between high salt intake and oxidative stress causing renal tubular dopamine oxidation, which leads to mitochondrial and lysosomal dysfunction and subsequently causes renal inflammation and hypertension. Methods and Results Male Sprague Dawley rats were divided into the following groups, vehicle (V)-tap water, high salt (HS)-1% NaCl, L-buthionine-sulfoximine (BSO), a prooxidant, and HS plus BSO without and with antioxidant resveratrol (R) for 6 weeks. Oxidative stress was significantly higher in BSO and HS+BSO-treated rat compared with vehicle; however, blood pressure was markedly higher in the HS+BSO group whereas an increase in blood pressure in the BSO group was modest. HS+BSO-treated rats had significant renal dopamine oxidation, lysosomal and mitochondrial dysfunction, and increased renal inflammation; however, HS alone had no impact on organelle function or inflammation. Resveratrol prevented oxidative stress, dopamine oxidation, organelle dysfunction, inflammation, and hypertension in BSO and HS+BSO rats. Conclusions These data suggest that dopamine oxidation, especially during increased sodium intake and oxidative milieu, leads to lysosomal and mitochondrial dysfunction and renal inflammation with subsequent increase in blood pressure. Resveratrol, while preventing oxidative stress, protects renal function and mitigates hypertension.


Anti-Inflammatory and Antioxidant Effects of Anthocyanins of Trifolium pratense (Red Clover) in Lipopolysaccharide-Stimulated RAW-267.4 Macrophages.

  • Sang Gil Lee‎ et al.
  • Nutrients‎
  • 2020‎

Red clover (Trifolium pratense) possesses various dietary compounds that improve human health. However, the functions of anthocyanins in red clover remain unclear. Here we examined anti-inflammatory and antioxidant effects of red clover extract (RC) and red clover anthocyanins fraction (RCA) using lipopolysaccharide (LPS)-treated RAW 264.7 macrophages and identified dietary compounds. RC and RCA suppressed LPS-induced expression of genes such as tumor necrosis factor (TNF)α, interleukin (IL)1β, inducible nitric oxide synthase (iNOS), monocyte chemoattractant protein (MCP)1, and cyclooxygenase (COX)2. LPS-stimulated intracellular reactive oxygen species (ROS) production also was prevented by both RC and RCA. NADPH oxidase 1 (NOX1) gene and phosphorylation of p47phox of NOX1 that were increased by LPS were inhibited in the cells treated with RCA. LPS-stimulated nuclear factor erythroid 2-related factor 2 (NRF2) gene expression and nuclear translocation of nuclear factor kappa B (NF-kB) subunit p65 were suppressed together with reduced iNOS and COX2 proteins by RCA. Additionally, 27 polyphenols and 7 anthocyanins from RC were identified and quantified. In conclusion, RC, especially RCA, exerted anti-inflammatory and anti-oxidative activities in vitro by regulating NF-κB and NRF2 signaling pathways, suggesting that anthocyanins in red clover are the potential candidates to reduce inflammation and oxidative stress.


Functional Characterization of Alternative and Classical Pathway C3/C5 Convertase Activity and Inhibition Using Purified Models.

  • Seline A Zwarthoff‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Complement is essential for the protection against infections; however, dysregulation of complement activation can cause onset and progression of numerous inflammatory diseases. Convertase enzymes play a central role in complement activation and produce the key mediators of complement: C3 convertases cleave C3 to generate chemoattractant C3a and label target cells with C3b, which promotes phagocytosis; C5 convertases cleave C5 into chemoattractant C5a, and C5b, which drives formation of the membrane attack complex. Since convertases mediate nearly all complement effector functions, they are ideal targets for therapeutic complement inhibition. A unique feature of convertases is their covalent attachment to target cells, which effectively confines complement activation to the cell surface. However, surface localization precludes detailed analysis of convertase activation and inhibition. In our previous work, we developed a model system to form purified alternative pathway (AP) C5 convertases on C3b-coated beads and quantify C5 conversion via functional analysis of released C5a. Here, we developed a C3aR cell reporter system that enables functional discrimination between C3 and C5 convertases. By regulating the C3b density on the bead surface, we observe that high C3b densities are important for conversion of C5, but not C3, by AP convertases. Screening of well-characterized complement-binding molecules revealed that differential inhibition of AP C3 convertases (C3bBb) and C5 convertases [C3bBb(C3b)n] is possible. Although both convertases contain C3b, the C3b-binding molecules Efb-C/Ecb and FHR5 specifically inhibit C5 conversion. Furthermore, using a new classical pathway convertase model, we show that these C3b-binding proteins not only block AP C3/C5 convertases but also inhibit formation of a functional classical pathway C5 convertase under well-defined conditions. Our models enable functional characterization of purified convertase enzymes and provide a platform for the identification and development of specific convertase inhibitors for treatment of complement-mediated disorders.


Punicalagin Regulates Key Processes Associated with Atherosclerosis in THP-1 Cellular Model.

  • Sanaa Almowallad‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2020‎

Atherosclerosis may lead to cardiovascular diseases (CVD), which are the primary cause of death globally. In addition to conventional therapeutics for CVD, use of nutraceuticals that prevents cholesterol deposition, reduce existing plaques and hence anti-atherosclerotic effects of nutraceuticals appeared to be promising. As such, in the present study we evaluated the beneficial effects of punicalagin, a phytochemical against an atherosclerotic cell model in vitro. Cytotoxicity assays were examined for 10 µM concentration of punicalagin on THP-1 macrophages. Real-time-polymerase chain reaction (RT-PCR) was used to analyze monocyte chemoattractant protein-1 (MCP-1) and Intercellular adhesion molecule (ICAM-1) expressions. Monocyte migration and cholesterol efflux assays were performed to investigate punicalagin's further impact on the key steps of atherosclerosis. Cytotoxicity assays demonstrated no significant toxicity for punicalagin (10 µM) on THP-1 macrophages. Punicalagin inhibited the IFN-γ-induced overexpression of MCP-1 and ICAM-1 in macrophages by 10 fold and 3.49 fold, respectively, compared to the control. Punicalagin also reduced the MCP-1- mediated migration of monocytes by 28% compared to the control. Percentages of cellular cholesterol efflux were enhanced in presence or absence of IFN-γ by 88% and 84% compared to control with 58 %and 62%, respectively. Punicalagin possesses anti-inflammatory and anti-atherosclerotic effects. Punicalagin also did not exhibit any cytotoxicity and therefore can be considered a safe and potential candidate for the treatment and prevention of atherosclerosis.


Pericyte Microvesicles as Plasma Biomarkers Reflecting Brain Microvascular Signaling in Patients With Acute Ischemic Stroke.

  • Abderahim Gaceb‎ et al.
  • Stroke‎
  • 2024‎

Blood-based biomarkers have the potential to reflect cerebrovascular signaling after microvascular injury; yet, the detection of cell-specific signaling has proven challenging. Microvesicles retain parental cell surface antigens allowing detection of cell-specific signaling encoded in their cargo. In ischemic stroke, the progression of pathology involves changes in microvascular signaling whereby brain pericytes, perivascular cells wrapping the microcapillaries, are one of the early responders to the ischemic insult. Intercepting the pericyte signaling response peripherally by isolating pericyte-derived microvesicles may provide not only diagnostic information on microvascular injury but also enable monitoring of important pathophysiological mechanisms.


Carvacrol Protects against Hepatic Steatosis in Mice Fed a High-Fat Diet by Enhancing SIRT1-AMPK Signaling.

  • Eunkyung Kim‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

We investigated the protective effect of carvacrol against high-fat-diet-induced hepatic steatosis in mice and the potential underlying molecular mechanisms. Mice were fed a normal diet, high-fat diet, or carvacrol-supplemented high-fat diet for 10 weeks. Compared to mice fed the high-fat diet, those fed the carvacrol-supplemented diet showed significantly lower hepatic lipid levels and reduced plasma activities of alanine aminotransferase and aspartate aminotransferase and plasma concentrations of monocyte chemoattractant protein 1 and tumor necrosis factor α . Carvacrol decreased the expression of LXR α , SREBP1c, FAS, leptin, and CD36 genes and phosphorylation of S6 kinase 1 protein involved in lipogenesis, whereas it increased the expression of SIRT1 and CPT1 genes and phosphorylation of liver kinase B1, AMP-activated protein kinase, and acetyl-CoA carboxylase proteins involved in fatty acid oxidation in the liver of mice fed the high-fat diet. These results suggest that carvacrol prevents HFD-induced hepatic steatosis by activating SIRT1-AMPK signaling.


The tyrosine kinase inhibitor Dasatinib reduces cardiac steatosis and fibrosis in obese, type 2 diabetic mice.

  • Yue Gu‎ et al.
  • Cardiovascular diabetology‎
  • 2023‎

Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots.


Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts.

  • Oscar Villa‎ et al.
  • Journal of tissue engineering‎
  • 2015‎

Enamel matrix derivative is used to promote periodontal regeneration during the corrective phase of the treatment of periodontal defects. Our main goal was to analyze the bioactivity of different molecular weight fractions of enamel matrix derivative. Enamel matrix derivative, a complex mixture of proteins, was separated into 13 fractions using size-exclusion chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-electrospray ionization-tandem mass spectrometry. Human periodontal ligament fibroblasts were treated with either enamel matrix derivative or the different fractions. Proliferation and cytokine secretion to the cell culture medium were measured and compared to untreated cells. The liquid chromatography-electrospray ionization-tandem mass spectrometry analyses revealed that the most abundant peptides were amelogenin and leucine-rich amelogenin peptide related. The fractions containing proteins above 20 kDa induced an increase in vascular endothelial growth factor and interleukin-6 secretion, whereas lower molecular weight fractions enhanced proliferation and secretion of interleukin-8 and monocyte chemoattractant protein-1 and reduced interleukin-4 release. The various molecular components in the enamel matrix derivative formulation might contribute to reported effects on tissue regeneration through their influence on vascularization, the immune response, and chemotaxis.


IL-9-triggered lncRNA Gm13568 regulates Notch1 in astrocytes through interaction with CBP/P300: contribute to the pathogenesis of experimental autoimmune encephalomyelitis.

  • Xiaomei Liu‎ et al.
  • Journal of neuroinflammation‎
  • 2021‎

Interleukin 9 (IL-9), produced mainly by T helper 9 (Th9) cells, has been recognized as an important regulator in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Astrocytes respond to IL-9 and reactive astrocytes always associate with blood-brain barrier damage, immune cell infiltration, and spinal injury in MS and EAE. Several long non-coding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of MS. Here, we examined the effects of lncRNA Gm13568 (a co-upregulated lncRNA both in EAE mice and in mouse primary astrocytes activated by IL-9) on the activation of astrocytes and the process of EAE.


Effects of Lespedeza Bicolor Extract on Regulation of AMPK Associated Hepatic Lipid Metabolism in Type 2 Diabetic Mice.

  • Younmi Kim‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2019‎

Lespedeza bicolor (LB) is one of the ornamental plants used for the treatment of inflammation caused by oxidative damage. However, its beneficial effects on hyperglycemia-induced hepatic damage and the related molecular mechanisms remain unclear. We hypothesized that Lespedeza bicolor extract (LBE) would attenuate hyperglycemia-induced liver injury in type 2 diabetes mellitus (T2DM). Diabetes was induced by a low dosage of streptozotocin (STZ) injection (30 mg/kg) with a high fat diet in male C57BL/6J mice. LBE was administered orally at 100 mg/kg or 250 mg/kg for 12 weeks. LBE supplementation regardless of dosage ameliorated plasma levels of hemoglobin A1c (HbA1c) in diabetic mice. Moreover, both LBE supplementations upregulated AMP-activation kinase (AMPK), which may activate sirtuin1 (SIRT) associated pathway accompanied by decreased lipid synthesis at low dose of LBE supplementation. These changes were in part explained by reduced protein levels of oxidative stress (nuclear factor erythroid 2-related factor 2 (Nrf2) and catalase), inflammation (nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), interleukin-6 (IL-6), and nitric oxide synthases (iNOS)), and fibrosis (α-smooth muscle actin (α-SMA) and protein kinase C (PKC)) in diabetic liver. Taken together, LBE might be a potential nutraceutical to ameliorate hepatic damage by regulation of AMPK associated pathway via oxidative stress, inflammation, and fibrosis in T2DM.


Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA.

  • Marieke A D van Zoelen‎ et al.
  • Molecular immunology‎
  • 2011‎

Monocyte chemoattractant protein 1 (MCP-1) plays an important role in leukocyte recruitment to sites of infection and inflammation. In addition, MCP-1 may attenuate inflammation by virtue of its capacity to inhibit the production of proinflammatory cytokines. We here investigated the role of MCP-1 in lung inflammation induced by lipopolysaccharide (LPS) or lipoteichoic acid (LTA), constituents of the gram-negative and gram-positive bacterial cell wall, respectively. Healthy humans demonstrated elevated MCP-1 concentrations in their bronchoalveolar lavage fluid (BALF) 6h after inhalation of LPS. Similarly, intranasal administration of LPS or LTA to mice resulted in a rise in BALF MCP-1 levels. Murine alveolar macrophage-like cells released significant amounts of MCP-1 upon stimulation with LPS or LTA in vitro. Compared to Wt mice, MCP-1(-/-) mice demonstrated lower TNF-α levels and a diminished neutrophil influx into their bronchoalveolar space after either LPS or LTA instillation. After intrapulmonary delivery of LPS MCP-1(-/-) mice had decreased interleukin-6 and KC concentrations and less severe lung inflammation upon histopathological examination. Remarkably, MCP-1 deficiency was associated with an early enhancement of interleukin-10 release in BALF after both LPS and LTA instillation. These data suggest that MCP-1 is a proinflammatory mediator during pulmonary inflammation induced by either LPS or LTA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: