Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 papers out of 2,071,295 papers

Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences.

  • Wei Wang‎ et al.
  • Proteome science‎
  • 2003‎

Separation of proteins by two-dimensional gel electrophoresis (2-DE) coupled with identification of proteins through peptide mass fingerprinting (PMF) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is the widely used technique for proteomic analysis. This approach relies, however, on the presence of the proteins studied in public-accessible protein databases or the availability of annotated genome sequences of an organism. In this work, we investigated the reliability of using raw genome sequences for identifying proteins by PMF without the need of additional information such as amino acid sequences. The method is demonstrated for proteomic analysis of Klebsiella pneumoniae grown anaerobically on glycerol. For 197 spots excised from 2-DE gels and submitted for mass spectrometric analysis 164 spots were clearly identified as 122 individual proteins. 95% of the 164 spots can be successfully identified merely by using peptide mass fingerprints and a strain-specific protein database (ProtKpn) constructed from the raw genome sequences of K. pneumoniae. Cross-species protein searching in the public databases mainly resulted in the identification of 57% of the 66 high expressed protein spots in comparison to 97% by using the ProtKpn database. 10 dha regulon related proteins that are essential for the initial enzymatic steps of anaerobic glycerol metabolism were successfully identified using the ProtKpn database, whereas none of them could be identified by cross-species searching. In conclusion, the use of strain-specific protein database constructed from raw genome sequences makes it possible to reliably identify most of the proteins from 2-DE analysis simply through peptide mass fingerprinting.


Morpholino oligonucleotide-triggered knockdown reveals a role for maternal E-cadherin during early mouse development.

  • Benoît Kanzler‎ et al.
  • Mechanisms of development‎
  • 2003‎

We report that gene silencing via intracytoplasmic microinjections of morpholino-modified antisense oligonucleotides is an effective and reproducible method to study both maternal and zygotic gene functions during early and late stages of mouse preimplantation development. The zygotic expression of the beta-geo transgene in the ROSA26 mouse strain could be inhibited until at least the early blastula stages. Thus morpholino-triggered gene inactivation appears to be a useful method to study the functional role of genes in preimplantation development. Using this approach, we have investigated a potential role of maternal expression of Cdh1, the gene encoding the cell-adhesion molecule E-cadherin. Inhibition of translation of maternal E-cadherin mRNA causes a developmental arrest at the two-cell stage. BrUTP incorporation assays indicated that this developmental defect cannot be explained by a general failure in transcriptional activity. This defect is reversible since E-cadherin mRNA can rescue the affected embryos, suggesting that a functional adhesion complex, present at the junction between blastomeres, is a prerequisite for the normal development of the mouse preimplantation embryo. Our study thus reveals a previously unanticipated role of maternal E-cadherin during early stages of mouse development.


Evaluation of the therapeutic potential of PPARalpha agonists for X-linked adrenoleukodystrophy.

  • Heidelinde Rampler‎ et al.
  • Molecular genetics and metabolism‎
  • 2003‎

Adrenoleukodystrophy protein (ABCD1), a peroxisomal membrane protein, is mutated in patients affected by X-linked adrenoleukodystrophy (X-ALD). Adrenoleukodystrophy-related protein (ABCD2) is the closest relative of ABCD1. Pharmacological induction of ABCD2 gene expression has been proposed as a novel therapy strategy for X-ALD. Fibrates induce peroxisome proliferation and Abcd2 expression in rodent liver. Here we evaluate the possibility of using peroxisome proliferator-activated receptor alpha (PPARalpha) agonists for pharmacological induction of ABCD2 expression. In the liver of PPARalpha-deficient mice, both the constitutive and the fenofibrate-inducible Abcd2 gene expression was found to be PPARalpha-dependent. In the brain, PPARalpha-deficiency has no effect on Abcd2 expression. In mice orally treated with the novel, highly selective, and potent PPARalpha agonists GW 7647, GW 6867, and tetradecylthioacetic acid, Abcd2 expression was induced in liver and adrenal glands, but not in brain and testis. None of four putative PPREs identified in the 5(')-flanking DNA and in intron 1 of the Abcd2 gene conferred fibrate response in luciferase reporter assays. Thus, although fibrate-mediated Abcd2 induction is PPARalpha-dependent, it appears to be an indirect mechanism. Within the mouse Abcd2 promoter, a putative sterol regulatory element (SRE) similar in sequence and position to the characterized SRE sequence of the human ABCD2 promoter, was identified. A PPARalpha dependent induction of the sterol regulatory-binding protein 2 (SREBP2) and a down-regulation of SREBP1c mRNA levels could be demonstrated after fenofibrate treatment of mice. Our results suggest that the PPARalpha agonist-mediated induction of Abcd2 expression seems to be indirect and possibly mediated by SREBP2.


The Mre11 complex is required for ATM activation and the G2/M checkpoint.

  • Christian T Carson‎ et al.
  • The EMBO journal‎
  • 2003‎

The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.


Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide.

  • John Schmieg‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

alpha-Galactosylceramide (alpha-GalCer) is a glycolipid that stimulates natural killer T cells to produce both T helper (Th) 1 and Th2 cytokines. This property enables alpha-GalCer to ameliorate a wide variety of infectious, neoplastic, and autoimmune diseases; however, its effectiveness against any one disease is limited by the opposing activities of the induced Th1 and Th2 cytokines. Here, we report that a synthetic C-glycoside analogue of alpha-GalCer, alpha-C-galactosylceramide (alpha-C-GalCer), acts as natural killer T cell ligand in vivo, and stimulates an enhanced Th1-type response in mice. In two disease models requiring Th1-type responses for control, namely malaria and melanoma metastases, alpha-C-GalCer exhibited a 1,000-fold more potent antimalaria activity and a 100-fold more potent antimetastatic activity than alpha-GalCer. Moreover, alpha-C-GalCer consistently stimulated prolonged production of the Th1 cytokines interferon-gamma and interleukin (IL)-12, and decreased production of the Th2 cytokine IL-4 compared with alpha-GalCer. Finally, alpha-C-GalCer's enhanced therapeutic activity required the presence of IL-12, which was needed to stimulate natural killer cells for optimal interferon-gamma production, but did not affect IL-4. Overall, our results suggest that alpha-C-GalCer may one day be an excellent therapeutic option for diseases resolved by Th1-type responses.


Dendritic cells initiate immune control of epstein-barr virus transformation of B lymphocytes in vitro.

  • Kara Bickham‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

The initiation of cell-mediated immunity to Epstein-Barr virus (EBV) has been analyzed with cells from EBV-seronegative blood donors in culture. The addition of dendritic cells (DCs) is essential to prime naive T cells that recognize EBV-latent antigens in enzyme-linked immunospot assays for interferon gamma secretion and eradicate transformed B cells in regression assays. In contrast, DCs are not required to control the outgrowth of EBV-transformed B lymphocytes from seropositive donors. Enriched CD4+ and CD8+ T cells mediate regression of EBV-transformed cells in seronegative and seropositive donors, but the kinetics of T-dependent regression occurs with much greater speed with seropositives. EBV infection of DCs cannot be detected by reverse transcription-polymerase chain reaction with primers specific for mRNA for the EBNA1 U and K exons. Instead, DCs capture B cell debris and generate T cells specific for EBV latency antigens. We suggest that the cross-presentation of EBV-latent antigens from infected B cells by DCs is required for the initiation of EBV-specific immune control in vivo and that future EBV vaccine strategies should target viral antigens to DCs.


Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia.

  • Melissa M Rolls‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell polarity. Mutant neuroblasts lack apical localization of Par6 and Lgl, and fail to exclude Miranda from the apical cortex; yet, they show normal apical crescents of Baz/Par3, Pins, Inscuteable, and Discs large and normal spindle orientation. Mutant imaginal disc epithelia have defects in apical/basal cell polarity and tissue morphology. In addition, we show that aPKC mutants show reduced cell proliferation in both neuroblasts and epithelia, the opposite of the lethal giant larvae (lgl) tumor suppressor phenotype, and that reduced aPKC levels strongly suppress most lgl cell polarity and overproliferation phenotypes.


Notch signaling controls multiple steps of pancreatic differentiation.

  • L Charles Murtaugh‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2003‎

Multiple cell types of the pancreas appear asynchronously during embryogenesis, which requires that pancreatic progenitor cell potential changes over time. Loss-of-function studies have shown that Notch signaling modulates the differentiation of these progenitors, but it remains unclear how and when the Notch pathway acts. We established a modular transgenic system to heritably activate mouse Notch1 in multiple types of progenitors and differentiated cells. We find that misexpression of activated Notch in Pdx1-expressing progenitor cells prevents differentiation of both exocrine and endocrine lineages. Progenitors remain trapped in an undifferentiated state even if Notch activation occurs long after the pancreas has been specified. Furthermore, endocrine differentiation is associated with escape from this activity, because Ngn3-expressing endocrine precursors are susceptible to Notch inhibition, whereas fully differentiated endocrine cells are resistant.


Multi-species sequence comparison: the next frontier in genome annotation.

  • Inna Dubchak‎ et al.
  • Genome biology‎
  • 2003‎

Multi-species comparisons of DNA sequences are more powerful for discovering functional sequences than pairwise DNA sequence comparisons. Most current computational tools have been designed for pairwise comparisons, and efficient extension of these tools to multiple species will require knowledge of the ideal evolutionary distance to choose and the development of new algorithms for alignment, analysis of conservation, and visualization of results.


Signaling advances from immunogenetics to immunogenomics.

  • Mark Boothby‎
  • Genome biology‎
  • 2003‎

Recent studies describe new genome-wide mutagenesis strategies, coupled with phenotypic screening, and demonstrate the power of such approaches to provide new insights into the genetics of the immune response.


Cannabinoid CB1 receptor activation does not prevent the toxicity of glutamate towards embryonic chick telencephalon primary cultures.

  • Olov Nilsson‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2003‎

Cannabinoids, as a result of their ability to activate cannabinoid CB1 receptors, have been shown to possess neuroprotective properties in vivo. In vitro studies into neuroprotective effects mediated by CB1 receptors have in general used primary neuronal cultures derived from embryonic rodents. In the present study, we have investigated whether embryonic chick telencephalon primary cultures in serum-free medium are a useful alternative for such in vitro studies. The CB agonist CP 55940 reduced the cAMP response to 5 microM forskolin by 40 and 50% at concentrations of 3 nM and 30 nM, respectively. This reduction was blocked by the CB1 receptor antagonist AM251, indicating the presence of functional CB1 receptors in the cultures. Incubation of the cultures with glutamate (100 microM or 1 mM) for 1 h followed by medium change and incubation for 24 h produced a release of the cytoplasmic enzyme lactate dehydrogenase into the medium. This release was prevented by MK-801 confirming the central role of NMDA receptors in the glutamate toxicity. However, 3-30 nM CP 55940 did not produce any neuroprotection in this model regardless as to whether dibutyryl cyclic AMP was added to the culture medium. The endocannabinoid anandamide was also without effect when added either per se or together with the related N-acyl ethanolamines palmitoylethanolamide, oleoylethanolamide and stearoylethanolamide (at relative concentrations matching those seen in rat brain after excitotoxic insult). It is concluded that embryonic chick neurons in primary serum-free culture are not a useful model for the study of neuroprotective effects mediated by CB1 receptors in vitro.


Acclimation of Daphnia magna to environmentally realistic copper concentrations.

  • Bart T A Bossuyt‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2003‎

It may be hypothesised that as the bioavailable background concentration of an essential metal increases (within natural limits), the natural tolerance (to the metal) of the acclimated/adapted organisms and communities will increase. In this study the influence of acclimation to different copper concentrations on the sensitivity of the freshwater cladoceran Daphnia magna Straus was investigated. D. magna was acclimated over three generations to environmentally relevant copper concentrations ranging from 0.5 to 100 microg Cu/l (copper activity: 7.18 x 10(-15) to 3700 x 10(-12) M Cu2+). A modified standard test medium was used as culture and test medium. Medium modifications were: reduced hardness (lowered to 180 mg CaCO3/l) and addition of Aldrich humic acid at a concentration of 5 mg DOC/l (instead of EDTA). The effects of acclimation on these organisms were monitored using acute mortality assays and long-term assays in which life table parameters, copper body concentrations and energy reserves were used as test endpoints. Our results showed a two-fold increase in acute copper tolerance with increasing acclimation concentration for second and third generation organisms. Copper acclimation concentrations up to 35 microg Cu/l (80 pM Cu2+) did not affect the net reproduction and the intrinsic growth rate. The energy reserves of the acclimated daphnids revealed an Optimal Concentration range (OCEE) and concentrations between 5 and 12 microg Cu/l (0.5-4.1 pM Cu2+) and 1 and 35 microg Cu/l (0.023-80 pM Cu2+) seemed to be optimal for first and third generation daphnids, respectively. Lower and higher copper concentrations resulted in deficiency and toxicity responses. It was also demonstrated that up to 35 microg Cu/l, third generation daphnids were able to regulate their total copper body concentration. These results clearly indicate that bioavailable background copper concentrations present in culture media have to be considered in the evaluation of toxicity test results, especially when the toxicity data are used for water quality guideline derivation and/or ecological risk assessment for metals.


Treatment of experimental ureteral strictures by endourological ureterotomy and implantation of stents in the porcine animal model.

  • Federico Soria‎ et al.
  • Research in veterinary science‎
  • 2004‎

The objective of this study is to evaluate the dilation of the ureter using endoureterotomy and an expanding-sheath double pigtail ureteral stent in the treatment of experimentally induced ureteral strictures in the porcine animal model. This is a new treatment in the ureteral strictures resolution in Veterinary Urology, although it is not a common affection, it usually appears as a consequence of ureteritis and in the iatrogenic female genital surgery. The experimental study is design in three phases: induction of experimental stricture, diagnosis and treatment of the stricture and follow-up. We have used 10 healthy Large White female pigs. The internal ureteral diameter was measured prior to laparoscopic ligature stricture induction using retrograde ureteropyelography (RUPG). Experimental stricture was diagnosed 4 weeks after intervention, using RUPG and ultrasound, and treated by endoureterotomy and subsequent placement of a double pigtail ureteral stent, which was removed 6 weeks later. The study finished 4 weeks later with measurement of ureteral diameters using RPUG and ultrasound evaluation. Except in one case, all ureters displayed permanent dilation of the strictured area for 10 weeks after treatment (6 weeks with ureteral stent and 4 more weeks without stent). Finally, this technique proved to be effective in cases of short-length and short-living ureteral strictures, and represents a viable alternative to conventional surgery in animals.


Quantification of layer-specific gene expression in the hippocampus: effective use of laser microdissection in combination with quantitative RT-PCR.

  • Guido J Burbach‎ et al.
  • Journal of neuroscience methods‎
  • 2003‎

Laser microdissection in combination with quantitative RT-PCR is now widely appreciated as an excellent tool for quantifying mRNA levels in defined cell populations. It may be particularly useful in the hippocampal formation, where principal cells form distinct and readily identifiable cell layers. Here we are presenting an optimized protocol for labeling hippocampal principal cells on foil-mounted sections for microdissection with the Leica AS LMD system and discuss potential further applications and pitfalls. Employing this optimized method, we studied changes in brain-derived neurotrophic factor (BDNF) mRNA expression in granule cells of the mouse dentate gyrus following unilateral entorhinal cortex lesion. In this lesioning paradigm, changes in BDNF mRNA expression have previously been reported in the rat. Using laser microdissection, the granule cell layers ipsi- and contralateral to the lesion were collected and changes in BDNF levels were quantified using quantitative RT-PCR. BDNF mRNA levels were five-fold higher on the ipsilateral side compared to levels found on the contralateral side or in controls. The development of this optimized method for laser microdissection and subsequent quantitative RT-PCR allows layer-specific quantification of gene expression levels in the hippocampus and may be similarly employed in other brain areas or tissues with a laminar arrangement or high density of cells.


Assessment of two methods for handling blood in collection tubes with RNA stabilizing agent for surveillance of gene expression profiles with high density microarrays.

  • Dzung C Thach‎ et al.
  • Journal of immunological methods‎
  • 2003‎

Genome-wide expression studies of human blood samples in the context of epidemiologic surveillance are confronted by numerous challenges-one of the foremost being the capability to produce reliable detection of transcript levels. This led us to consider the Paxgene Blood RNA System, which consists of a stabilizing additive in an evacuated blood collection tube (PAX tube) and a sample processing kit (PAX kit). The PAX tube contains a solution that inhibits RNA degradation and gene induction as blood is drawn into the tube. The stability of RNA in PAX tubes under conditions for practical clinical applications has been determined by RT-PCR, but has not been assessed at the transcriptome level on Affymetrix microarrays. Here, we report a quality assured and controlled protocol that is capable of producing reliable gene expression profiles using the GeneChip system with RNA isolated from PAX tubes. Using this protocol, we compared quality metrics and gene-expression profiles of RNA, extracted from blood in PAX tubes that sat at room temperature for 2 h, with that of blood in PAX tubes incubated at room temperature for 9 h followed by storage at -20 degrees C for 6 days. Of numerous metrics, differences between the two handling methods were detected for the level of DNA contamination, RNA yield, and double stranded cDNA yield. Analysis of variance of gene-expression revealed small but significant differences between the handling methods. These results contribute to the determination of protocols for clinical studies and progress us towards the goal of using the transcriptome in diagnosis and surveillance.


Expression of OP4 (ORL1, NOP1) receptors in vascular endothelium.

  • Filippo Granata‎ et al.
  • European journal of pharmacology‎
  • 2003‎

Endothelial cells from rat brain microvessels, human aortic artery and human umbilical vein were examined, together with ex vivo rat brain capillaries and rat aortic ring sections, for the expression of opioid receptor-like OP-4 mRNA and protein. High levels of mRNA expression and an immunopositive reaction for the receptor protein were detected in the endothelial cells from primary and from established in vitro cultures, as well as in the intima of ex vivo rat aortic rings, where the signal was limited to the endothelial layer. Interaction of the OP4 receptor with its physiological ligand nociceptin caused, in cultured endothelial cells, the activation of a mitogen-activated protein (MAP) kinase cascade. Taken together, these results show that the OP4 receptor is synthesised and functionally expressed in endothelial cells, presumably as a starting point for some vasoactive mechanism(s).


Melanocortin receptor agonists and antagonists modulate nociceptive sensitivity in the mouse formalin test.

  • Sara Bellasio‎ et al.
  • European journal of pharmacology‎
  • 2003‎

A number of studies suggest the involvement of melanocortins in nociception, and although the mechanism through which this occurs is still unknown, experimental evidence would suggest an involvement of melanocortin MC(4) receptors. We investigated the effect of melanocortin receptor agonist and antagonists on nociceptive behaviour induced by formalin in the mouse. The intrathecal injection of the melanocortin receptor agonist MTII ([Ac-Nle(4),Asp(5),D-Phe(7),Lys(10)]cyclo-alpha-MSH-(4-10) amide) (5 nmol; P<0.05) significantly increased nociception in both phases of the formalin test, whereas the synthetic melanocortin receptor antagonists, SHU9119 ([Ac-Nle(4),Asp(5),D-2-Nal(7),Lys(10)]cyclo-alpha-MSH-(4-10) amide) (5 nmol), HS014 ([Ac-Cys(11),D-2-Nal(14),Cys(18)]beta-MSH-(11-22)amide) (5 nmol), and JKC-363 (cyclic [Mpr(11),D-Nal(14),Cys(18),Asp(22)-NH(2)]beta-MSH-11-22)) (5 nmol), and the endogenous receptor antagonist Agouti-related protein (AgRP) (1.5 nmol) were effective in reducing nociception in the late phase of the formalin test (50-60% of reduction in licking/flinching response; P<0.05). The present findings further support the involvement of the melanocortin system in the control of nociception. Moreover, considering that melanocortin MC(4) receptors are the only melanocortin subtype receptors present in the spinal cord, we can assume that the activity of the peptides in the formalin model is mediated through melanocortin MC(4) receptors.


IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients.

  • Ebru Erbay‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Insulin-like growth factors (IGFs) are essential for skeletal muscle development, regeneration, and hypertrophy. Although autocrine actions of IGF-II are known to initiate myoblast differentiation, the regulatory elements and upstream signaling pathways for myogenic expression of IGF-II remain elusive. Here, we report the regulation of IGF-II transcription by mTOR, as well as by amino acid sufficiency, through the IGF-II promoter 3 and a downstream enhancer during C2C12 myoblast differentiation. Furthermore, we present evidence that IGF production, and not IGF signaling, is the primary target for mTOR's function in the initiation of differentiation. Moreover, myogenic signaling by mTOR is independent of its kinase activity and mediated by the PI3K-Akt pathway. Our findings represent the first identification of a signaling pathway that regulates IGF-II expression in myogenesis and implicate the mTOR-IGF axis as a molecular link between nutritional levels and skeletal muscle development.


Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages.

  • Hong-Guo Yu‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Condensin is an evolutionarily conserved protein complex that helps mediate chromosome condensation and segregation in mitotic cells. Here, we show that condensin has two activities that contribute to meiotic chromosome condensation in Saccharomyces cerevisiae. One activity, common to mitosis, helps mediate axial length compaction. A second activity promotes chromosome individualization with the help of Red1 and Hop1, two meiotic specific components of axial elements. Like Red1 and Hop1, condensin is also required for efficient homologue pairing and proper processing of double strand breaks. Consistent with these functional links condensin is necessary for proper chromosomal localization of Red1 and Hop1 and the subsequent assembly of the synaptonemal complex. Finally, condensin has a Red1/Hop1-independent role in the resolution of recombination-dependent linkages between homologues in meiosis I. The existence of distinct meiotic activities of condensin (axial compaction, individualization, and resolution of recombination-dependent links) provides an important framework to understand condensin's role in both meiotic and mitotic chromosome structure and function.


Small GTPase Rin induces neurite outgrowth through Rac/Cdc42 and calmodulin in PC12 cells.

  • Mitsunobu Hoshino‎ et al.
  • The Journal of cell biology‎
  • 2003‎

The novel Ras-like small GTPase Rin is expressed prominently in adult neurons, and binds calmodulin (CaM) through its COOH-terminal-binding motif. It might be involved in calcium/CaM-mediated neuronal signaling, but Rin-mediated signal transduction pathways have not yet been elucidated. Here, we show that expression of Rin induces neurite outgrowth without nerve growth factor or mitogen-activated protein kinase activation in rat pheochromocytoma PC12 cells. Rin-induced neurite outgrowth was markedly inhibited by coexpression with dominant negative Rac/Cdc42 protein or CaM inhibitor treatment. We also found that expression of Rin elevated the endogenous Rac/Cdc42 activity. Rin mutant proteins, in which the mutation disrupted association with CaM, failed to induce neurite outgrowth irrespective of Rac/Cdc42 activation. Disruption of endogenous Rin function inhibited the neurite outgrowth stimulated by forskolin and extracellular calcium entry through voltage-dependent calcium channel evoked by KCl. These findings suggest that Rin-mediated neurite outgrowth signaling requires not only endogenous Rac/Cdc42 activation but also Rin-CaM association, and that endogenous Rin is involved in calcium/CaM-mediated neuronal signaling pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: