Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 papers out of 263 papers

Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies.

  • Han Chen‎ et al.
  • American journal of human genetics‎
  • 2019‎

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.


Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.

  • Ganesh Chauhan‎ et al.
  • Neurology‎
  • 2019‎

To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.


TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits.

  • Dorothée Diogo‎ et al.
  • PloS one‎
  • 2015‎

Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3 x 10(-21)), A928V (rs35018800, OR = 0.53, P = 1.2 x 10(-9)), and I684S (rs12720356, OR = 0.86, P = 4.6 x 10(-7)). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6 x 10(-18)), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; P(omnibus) = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing >500 phenotypes using electronic medical records (EMR) in >29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases.


Genetic loci associated with circulating levels of very long-chain saturated fatty acids.

  • Rozenn N Lemaitre‎ et al.
  • Journal of lipid research‎
  • 2015‎

Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10(-13)). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10(-40)) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10(-26)) and lignoceric acid (P = 3.20 × 10(-21)). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.


Actionable exomic incidental findings in 6503 participants: challenges of variant classification.

  • Laura M Amendola‎ et al.
  • Genome research‎
  • 2015‎

Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base.


Genetic variation at 16q24.2 is associated with small vessel stroke.

  • Matthew Traylor‎ et al.
  • Annals of neurology‎
  • 2017‎

Genome-wide association studies (GWAS) have been successful at identifying associations with stroke and stroke subtypes, but have not yet identified any associations solely with small vessel stroke (SVS). SVS comprises one quarter of all ischemic stroke and is a major manifestation of cerebral small vessel disease, the primary cause of vascular cognitive impairment. Studies across neurological traits have shown that younger-onset cases have an increased genetic burden. We leveraged this increased genetic burden by performing an age-at-onset informed GWAS meta-analysis, including a large younger-onset SVS population, to identify novel associations with stroke.


Common variants at PVT1, ATG13-AMBRA1, AHI1 and CLEC16A are associated with selective IgA deficiency.

  • Paola G Bronson‎ et al.
  • Nature genetics‎
  • 2016‎

Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Europeans. Our genome-wide association study (GWAS) meta-analysis of 1,635 patients with IgAD and 4,852 controls identified four new significant (P < 5 × 10-8) loci and association with a rare IFIH1 variant (p.Ile923Val). Peak new variants (PVT1, P = 4.3 × 10-11; ATG13-AMBRA1, P = 6.7 × 10-10; AHI1, P = 8.4 × 10-10; CLEC16A, P = 1.4 × 10-9) overlapped with autoimmune markers (3/4) and correlated with 21 putative regulatory variants, including expression quantitative trait loci (eQTLs) for AHI1 and DEXI and DNase hypersensitivity sites in FOXP3+ regulatory T cells. Pathway analysis of the meta-analysis results showed striking association with the KEGG pathway for IgA production (pathway P < 0.0001), with 22 of the 30 annotated pathway genes containing at least one variant with P ≤ 0.05 in the IgAD meta-analysis. These data suggest that a complex network of genetic effects, including genes known to influence the biology of IgA production, contributes to IgAD.


The genetics of human autoimmune disease: A perspective on progress in the field and future directions.

  • Michael F Seldin‎
  • Journal of autoimmunity‎
  • 2015‎

Progress in defining the genetics of autoimmune disease has been dramatically enhanced by large scale genetic studies. Genome-wide approaches, examining hundreds or for some diseases thousands of cases and controls, have been implemented using high throughput genotyping and appropriate algorithms to provide a wealth of data over the last decade. These studies have identified hundreds of non-HLA loci as well as further defining HLA variations that predispose to different autoimmune diseases. These studies to identify genetic risk loci are also complemented by progress in gene expression studies including definition of expression quantitative trait loci (eQTL), various alterations in chromatin structure including histone marks, DNase I sensitivity, repressed chromatin regions as well as transcript factor binding sites. Integration of this information can partially explain why particular variations can alter proclivity to autoimmune phenotypes. Despite our incomplete knowledge base with only partial definition of hereditary factors and possible functional connections, this progress has and will continue to facilitate a better understanding of critical pathways and critical changes in immunoregulation. Advances in defining and understanding functional variants potentially can lead to both novel therapeutics and personalized medicine in which therapeutic approaches are chosen based on particular molecular phenotypes and genomic alterations.


Multi-ethnic analysis of lipid-associated loci: the NHLBI CARe project.

  • Kiran Musunuru‎ et al.
  • PloS one‎
  • 2012‎

Whereas it is well established that plasma lipid levels have substantial heritability within populations, it remains unclear how many of the genetic determinants reported in previous studies (largely performed in European American cohorts) are relevant in different ethnicities.


Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci.

  • Richa Saxena‎ et al.
  • American journal of human genetics‎
  • 2012‎

To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ∼2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups.


Gene-centric meta-analysis of lipid traits in African, East Asian and Hispanic populations.

  • Clara C Elbers‎ et al.
  • PloS one‎
  • 2012‎

Meta-analyses of European populations has successfully identified genetic variants in over 100 loci associated with lipid levels, but our knowledge in other ethnicities remains limited. To address this, we performed dense genotyping of ∼2,000 candidate genes in 7,657 African Americans, 1,315 Hispanics and 841 East Asians, using the IBC array, a custom ∼50,000 SNP genotyping array. Meta-analyses confirmed 16 lipid loci previously established in European populations at genome-wide significance level, and found multiple independent association signals within these lipid loci. Initial discovery and in silico follow-up in 7,000 additional African American samples, confirmed two novel loci: rs5030359 within ICAM1 is associated with total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (p = 8.8×10(-7) and p = 1.5×10(-6) respectively) and a nonsense mutation rs3211938 within CD36 is associated with high-density lipoprotein cholesterol (HDL-C) levels (p = 13.5×10(-12)). The rs3211938-G allele, which is nearly absent in European and Asian populations, has been previously found to be associated with CD36 deficiency and shows a signature of selection in Africans and African Americans. Finally, we have evaluated the effect of SNPs established in European populations on lipid levels in multi-ethnic populations and show that most known lipid association signals span across ethnicities. However, differences between populations, especially differences in allele frequency, can be leveraged to identify novel signals, as shown by the discovery of ICAM1 and CD36 in the current report.


Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease.

  • Gosia Trynka‎ et al.
  • Nature genetics‎
  • 2011‎

Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.


Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

  • Anubha Mahajan‎ et al.
  • Nature genetics‎
  • 2018‎

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.


Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease.

  • Connor A Emdin‎ et al.
  • Nature communications‎
  • 2018‎

Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease.


Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium.

  • Megan L Grove‎ et al.
  • PloS one‎
  • 2013‎

Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip.


Discovery and refinement of loci associated with lipid levels.

  • Cristen J Willer‎ et al.
  • Nature genetics‎
  • 2013‎

Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.


Family-based association analysis confirms the role of the chromosome 9q21.32 locus in the susceptibility of diabetic nephropathy.

  • Marcus G Pezzolesi‎ et al.
  • PloS one‎
  • 2013‎

A genome-wide association scan of type 1 diabetic patients from the GoKinD collections previously identified four novel diabetic nephropathy susceptibility loci that have subsequently been shown to be associated with diabetic nephropathy in unrelated patients with type 2 diabetes. To expand these findings, we examined whether single nucleotide polymorphisms (SNPs) at these susceptibility loci were associated with diabetic nephropathy in patients from the Joslin Study of Genetics of Nephropathy in Type 2 Diabetes Family Collection. Six SNPs across the four loci identified in the GoKinD collections and 7 haplotype tagging SNPs, were genotyped in 66 extended families of European ancestry. Pedigrees from this collection contained an average of 18.5 members, including 2 to 14 members with type 2 diabetes. Among diabetic family members, the 9q21.32 locus approached statistical significance with advanced diabetic nephropathy (P = 0.037 [adjusted P = 0.222]). When we expanded our definition of diabetic nephropathy to include individuals with high microalbuminuria, the strength of this association improved significantly (P = 1.42×10(-3) [adjusted P = 0.009]). This same locus also trended toward statistical significance with variation in urinary albumin excretion in family members with type 2 diabetes (P = 0.032 [adjusted P = 0.192]) and in analyses expanded to include all relatives (P = 0.019 [adjusted P = 0.114]). These data increase support that SNPs identified in the GoKinD collections on chromosome 9q21.32 are true diabetic nephropathy susceptibility loci.


Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis.

  • Jimmy Z Liu‎ et al.
  • Nature genetics‎
  • 2013‎

Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown etiology leading to fibrotic destruction of the bile ducts and ultimately to the need for liver transplantation. We compared 3,789 PSC cases of European ancestry to 25,079 population controls across 130,422 SNPs genotyped using the Immunochip. We identified 12 genome-wide significant associations outside the human leukocyte antigen (HLA) complex, 9 of which were new, increasing the number of known PSC risk loci to 16. Despite comorbidity with inflammatory bowel disease (IBD) in 72% of the cases, 6 of the 12 loci showed significantly stronger association with PSC than with IBD, suggesting overlapping yet distinct genetic architectures for these two diseases. We incorporated association statistics from 7 diseases clinically occurring with PSC in the analysis and found suggestive evidence for 33 additional pleiotropic PSC risk loci. Together with network analyses, these findings add to the genetic risk map of PSC and expand on the relationship between PSC and other immune-mediated diseases.


Significant linkage at chromosome 19q for otitis media with effusion and/or recurrent otitis media (COME/ROM).

  • Wei-Min Chen‎ et al.
  • BMC medical genetics‎
  • 2011‎

In previous analyses, we identified a region of chromosome 19 as harboring a susceptibility locus for chronic otitis media with effusion and/or recurrent otitis media (COME/ROM). Our aim was to further localize the linkage signal and ultimately identify the causative variant or variants. We followed up our previous linkage scan with dense SNP genotyping across in a 5 Mb region. A total of 607 individuals from 139 families, including 159 affected sib pairs and 62 second-degree affected relative pairs, were genotyped at 1,091 SNPs. We carried out a nonparametric linkage analysis, modeling marker-to-marker linkage disequilibrium.


A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis.

  • Ann B Begovich‎ et al.
  • American journal of human genetics‎
  • 2004‎

Rheumatoid arthritis (RA) is the most common systemic autoimmune disease, affecting approximately 1% of the adult population worldwide, with an estimated heritability of 60%. To identify genes involved in RA susceptibility, we investigated the association between putative functional single-nucleotide polymorphisms (SNPs) and RA among white individuals by use of a case-control study design; a second sample was tested for replication. Here we report the association of RA susceptibility with the minor allele of a missense SNP in PTPN22 (discovery-study allelic P=6.6 x 10(-4); replication-study allelic P=5.6 x 10(-8)), which encodes a hematopoietic-specific protein tyrosine phosphatase also known as "Lyp." We show that the risk allele, which is present in approximately 17% of white individuals from the general population and in approximately 28% of white individuals with RA, disrupts the P1 proline-rich motif that is important for interaction with Csk, potentially altering these proteins' normal function as negative regulators of T-cell activation. The minor allele of this SNP recently was implicated in type 1 diabetes, suggesting that the variant phosphatase may increase overall reactivity of the immune system and may heighten an individual carrier's risk for autoimmune disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: