Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 papers out of 2,962 papers

Morphology-driven downscaling of Streptomyces lividans to micro-cultivation.

  • Dino van Dissel‎ et al.
  • Antonie van Leeuwenhoek‎
  • 2018‎

Actinobacteria are prolific producers of secondary metabolites and industrially relevant enzymes. Growth of these mycelial micro-organisms in small culture volumes is challenging due to their complex morphology. Since morphology and production are typically linked, scaling down culture volumes requires better control over morphogenesis. In larger scale platforms, ranging from shake flasks to bioreactors, the hydrodynamics play an important role in shaping the morphology and determining product formation. Here, we report on the effects of agitation on the mycelial morphology of Streptomyces lividans grown in microtitre plates. Our work shows that at the appropriate agitation rates cultures can be scaled down to volumes as small as 100 µl while maintaining the same morphology as seen in larger scale platforms. Using image analysis and principal component analysis we compared the morphologies of the cultures; when agitated at 1400-1600 rpm the mycelial morphology in micro-cultures was similar to that obtained in shake flasks, while product formation was also maintained. Our study shows that the morphology of actinobacteria in micro-cultures can be controlled in a similar manner as in larger scale cultures by carefully controlling the mixing rate. This could facilitate high-throughput screening and upscaling.


Secondary Metabolites Produced during the Germination of Streptomyces coelicolor.

  • Matouš Čihák‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing) and/or play a role in competitive microflora repression (quorum quenching) in their nature environments.


Regulatory Control of Rishirilide(s) Biosynthesis in Streptomyces bottropensis.

  • Olga Tsypik‎ et al.
  • Microorganisms‎
  • 2021‎

Streptomycetes are well-known producers of numerous bioactive secondary metabolites widely used in medicine, agriculture, and veterinary. Usually, their genomes encode 20-30 clusters for the biosynthesis of natural products. Generally, the onset and production of these compounds are tightly coordinated at multiple regulatory levels, including cluster-situated transcriptional factors. Rishirilides are biologically active type II polyketides produced by Streptomyces bottropensis. The complex regulation of rishirilides biosynthesis includes the interplay of four regulatory proteins encoded by the rsl-gene cluster: three SARP family regulators (RslR1-R3) and one MarR-type transcriptional factor (RslR4). In this work, employing gene deletion and overexpression experiments we revealed RslR1-R3 to be positive regulators of the biosynthetic pathway. Additionally, transcriptional analysis indicated that rslR2 is regulated by RslR1 and RslR3. Furthermore, RslR3 directly activates the transcription of rslR2, which stems from binding of RslR3 to the rslR2 promoter. Genetic and biochemical analyses demonstrated that RslR4 represses the transcription of the MFS transporter rslT4 and of its own gene. Moreover, DNA-binding affinity of RslR4 is strictly controlled by specific interaction with rishirilides and some of their biosynthetic precursors. Altogether, our findings revealed the intricate regulatory network of teamworking cluster-situated regulators governing the biosynthesis of rishirilides and strain self-immunity.


Complete genome sequence of sixteen plant growth promoting Streptomyces strains.

  • Gopalakrishnan Subramaniam‎ et al.
  • Scientific reports‎
  • 2020‎

The genome sequences of 16 Streptomyces strains, showing potential for plant growth-promotion (PGP) activities in rice, sorghum, chickpea and pigeonpea, isolated from herbal vermicompost, have been decoded. The genome assemblies of the 16 Streptomyces strains ranged from 6.8 Mb to 8.31 Mb, with a GC content of 72 to 73%. The extent of sequence similarity (in terms of shared ortholog) in 16 Streptomyces strains showed 70 to 85% common genes to the closest publicly available Streptomyces genomes. It was possible to identify ~1,850 molecular functions across these 16 strains, of which close to 50% were conserved across the genomes of Streptomyces strains, whereas, ~10% were strain specific and the rest were present in various combinations. Genome assemblies of the 16 Streptomyces strains have also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, auxin, hydrocyanic acid, chitinase and cellulase. Further, the genome assemblies provided better understanding of genetic similarity among target strains and with the publically available Streptomyces strains.


Desert Environments Facilitate Unique Evolution of Biosynthetic Potential in Streptomyces.

  • Kunjukrishnan Kamalakshi Sivakala‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Searching for new bioactive metabolites from the bacterial genus Streptomyces is a challenging task. Combined genomic tools and metabolomic screening of Streptomyces spp. native to extreme environments could be a promising strategy to discover novel compounds. While Streptomyces of desertic origin have been proposed as a source of new metabolites, their genome mining, phylogenetic analysis, and metabolite profiles to date are scarcely documented. Here, we hypothesized that Streptomyces species of desert environments have evolved with unique biosynthetic potential. To test this, along with an extensive characterization of biosynthetic potential of a desert isolate Streptomyces sp. SAJ15, we profiled phylogenetic relationships among the closest and previously reported Streptomyces of desert origin. Results revealed that Streptomyces strains of desert origin are closer to each other and relatively distinct from Streptomyces of other environments. The draft genome of strain SAJ15 was 8.2 Mb in size, which had 6972 predicted genes including 3097 genes encoding hypothetical proteins. Successive genome mining and phylogenetic analysis revealed the presence of putative novel biosynthetic gene clusters (BGCs) with low incidence in another Streptomyces. In addition, high-resolution metabolite profiling indicated the production of arylpolyene, terpenoid, and macrolide compounds in an optimized medium by strain SAJ15. The relative abundance of different BGCs in arid Streptomyces differed from the non-arid counterparts. Collectively, the results suggested a distinct evolution of desert Streptomyces with a unique biosynthetic potential.


Elicitation of Antimicrobial Active Compounds by Streptomyces-Fungus Co-Cultures.

  • Matthieu Nicault‎ et al.
  • Microorganisms‎
  • 2021‎

The bacteria of the genus Streptomyces and Basidiomycete fungi harbor many biosynthetic gene clusters (BGCs) that are at the origin of many bioactive molecules with medical or industrial interests. Nevertheless, most BGCs do not express in standard lab growth conditions, preventing the full metabolic potential of these organisms from being exploited. Because it generates biotic cues encountered during natural growth conditions, co-culture is a means to elicit such cryptic compounds. In this study, we explored 72 different Streptomyces-fungus interaction zones (SFIZs) generated during the co-culture of eight Streptomyces and nine fungi. Two SFIZs were selected because they showed an elicitation of anti-bacterial activity compared to mono-cultures. The study of these SFIZs showed that co-culture had a strong impact on the metabolic expression of each partner and enabled the expression of specific compounds. These results show that mimicking the biotic interactions present in this ecological niche is a promising avenue of research to explore the metabolic capacities of Streptomyces and fungi.


Biogeography and Adaptive evolution of Streptomyces Strains from saline environments.

  • Fei Zhao‎ et al.
  • Scientific reports‎
  • 2016‎

The genus Streptomyces is a widespread genus within the phylum Actinobacteria and has been isolated from various environments worldwide. However, little is known about whether biogeography affects distributional pattern of Streptomyces in salty environments. Such information is essential for understanding the ecology of Streptomyces. Here we analyzed four house-keeping genes (16S rRNA, rpoB, recA and atpD) and salty-tolerance related genes (ectA-ectD) of 38 Streptomyces strains isolated from saline environments in Yunnan and Xinjiang Provinces of western China. The obtained Streptomyces strains were classified into three operational taxonomic units, each comprising habitat-specific geno- and ecotype STs. In combination with expressional variations of salty-tolerance related genes, the statistical analyses showed that spatial distance and environmental factors substantially influenced Streptomyces distribution in saline environments: the former had stronger influence at large spatial scales (>700 km), whereas the latter was influential at large (>700 km) and small spatial scales (<700 km). Plus, the quantitative analyses of salty-tolerence related genes (ectA-D) indicated that Streptomyces strains from salt lakes have higher expression of ectA-D genes and could accumulate larger quantities of ectoine and hydroxyectoine than strains from salt mines, which could help them resist to salinity in the hypersaline environments.


Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil.

  • Ramadan Hassan‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1-V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti-virulence of P. aeruginosa.


Identification of the first functional toxin-antitoxin system in Streptomyces.

  • Laura Sevillano‎ et al.
  • PloS one‎
  • 2012‎

Toxin-antitoxin (TA) systems are widespread among the plasmids and genomes of bacteria and archaea. This work reports the first description of a functional TA system in Streptomyces that is identical in two species routinely used in the laboratory: Streptomyces lividans and S. coelicolor. The described system belongs to the YefM/YoeB family and has a considerable similarity to Escherichia coli YefM/YoeB (about 53% identity and 73% similarity). Lethal effect of the S. lividans putative toxin (YoeBsl) was observed when expressed alone in E. coli SC36 (MG1655 ΔyefM-yoeB). However, no toxicity was obtained when co-expression of the antitoxin and toxin (YefM/YoeBsl) was carried out. The toxic effect was also observed when the yoeBsl was cloned in multicopy in the wild-type S. lividans or in a single copy in a S. lividans mutant, in which this TA system had been deleted. The S. lividans YefM/YoeBsl complex, purified from E. coli, binds with high affinity to its own promoter region but not to other three random selected promoters from Streptomyces. In vivo experiments demonstrated that the expression of yoeBsl in E. coli blocks translation initiation processing mRNA at three bases downstream of the initiation codon after 2 minutes of induction. These results indicate that the mechanism of action is identical to that of YoeB from E. coli.


StreptomeDB: a resource for natural compounds isolated from Streptomyces species.

  • Xavier Lucas‎ et al.
  • Nucleic acids research‎
  • 2013‎

Bacteria from the genus Streptomyces are very important for the production of natural bioactive compounds such as antibiotic, antitumour or immunosuppressant drugs. Around two-thirds of all known natural antibiotics are produced by these bacteria. An enormous quantity of crucial data related to this genus has been generated and published, but so far no freely available and comprehensive database exists. Here, we present StreptomeDB (http://www.pharmaceutical-bioinformatics.de/streptomedb/). To the best of our knowledge, this is the largest database of natural products isolated from Streptomyces. It contains >2400 unique and diverse compounds from >1900 different Streptomyces strains and substrains. In addition to names and molecular structures of the compounds, information about source organisms, references, biological role, activities and synthesis routes (e.g. polyketide synthase derived and non-ribosomal peptides derived) is included. Data can be accessed through queries on compound names, chemical structures or organisms. Extraction from the literature was performed through automatic text mining of thousands of articles from PubMed, followed by manual curation. All annotated compound structures can be downloaded from the website and applied for in silico screenings for identifying new active molecules with undiscovered properties.


Streptomyces exploration is triggered by fungal interactions and volatile signals.

  • Stephanie E Jones‎ et al.
  • eLife‎
  • 2017‎

It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.


Streptomyces Levis ABRIINW111 Inhibits SW480 Cells Growth by Apoptosis Induction.

  • Behnaz Faramarzian Azimi Maragheh‎ et al.
  • Advanced pharmaceutical bulletin‎
  • 2018‎

Purpose: Streptomyces sp., a dominant genus in Actinomycetes, is the source of a wide variety of secondary metabolites. Microbial metabolites can be utilized as novel anticancer agents; with fewer side effects. The present article illustrated the anti-carcinogenic effect of the ether extracted organic metabolites derived from Streptomyces bacteria on SW480 colon cancer cell line. Methods: MTT assay was performed in order to investigate the cytotoxicity effect of metabolites on SW480 cells. Apoptosis and cell cycle arrests were measured by flowcytometry. Morphological changes were indicated by Propidium iodide staining andP53 gene expression was evaluated by real-time PCR. Results: Streptomyces Levis ABRIINW111 inhibited cell growth, increased Caspases 3 and reduced Ki67 expression in a concentration/time-dependent manner in SW40 cells. Metabolites increased subG1 phase (apoptosis) and also cell cycle arrest in G1, G---2/M and S phase. P53 gene expression followed Sw480 cells treatment significantly. Conclusion: Streptomyces sp. metabolites have anti-carcinogenic effect on colon cancer cells. Streptomyces Levis ABRIINW111 metabolites are a candidate for Colon cancer treatment.


RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces.

  • Dita Šetinová‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

cis-Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces, the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH, and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces, including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors.


Draft Genome Sequence of Streptomyces gancidicus Strain BKS 13-15.

  • Shailesh Kumar‎ et al.
  • Genome announcements‎
  • 2013‎

We report the 7.3-Mbp genome sequence of Streptomyces gancidicus strain BKS 13-15, isolated from mangrove sediment samples collected from the Bhitar Kanika Mangrove Reserve Forest, Odissha, India. The draft genome of strain Streptomyces gancidicus strain BKS 13-15 consists of 7,300,479 bp with 72.6% G+C content, 6,631 protein-coding genes, and 71 RNAs.


Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C.

  • Ivana Crnovčić‎ et al.
  • Advances and applications in bioinformatics and chemistry : AABC‎
  • 2017‎

Sequencing the actinomycin (acm) biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm biosynthetic gene clusters lack a kynurenine-3-monooxygenase gene necessary for biosynthesis of 3-hydroxy-4-methylanthranilic acid, the building block of the Acm chromophore, which suggests participation of a genome-encoded relevant monooxygenase during Acm biosynthesis in both S. chrysomallus and S. antibioticus.


Phylogenetics of an antibiotic producing Streptomyces strain isolated from soil.

  • Vineeta Singh‎ et al.
  • Bioinformation‎
  • 2009‎

Traditional methods of species classification and identification of the organism are based on morphological, physiological, biochemical, developmental and nutritional characteristics. Accurate assignment of taxonomic status to the new biologically active microbial isolates through existing bioinformatics methods is now very essential and also helpful in chemical characterization of the active molecule produced by microorganisms. The bacterial strain M4 (ckm7) was isolated from the pre-treated soil sample collected from the agricultural field of Eastern Uttar Pradesh (U.P.), India and was found to be producing antibacterial and antifungal antibiotics. Taxonomic identification of the isolate belongs to the genus Streptomyces which was done with the help of sequence analysis and later confirmed by biological activity. Sequence comparison study of ckm7 showed 98% identical similarity with 16S rRNA gene sequences of Streptomyces spinichromogenes, Streptomyces triostinicus and Streptomyces capoamus. On the basis of both biological activity and phylogenetic analysis of ckm7, it was concluded that the isolated strain is a new variant of S. triostinicus.


Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe.

  • Paul C M Fogg‎ et al.
  • Applied and environmental microbiology‎
  • 2017‎

Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor, by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox.IMPORTANCEStreptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae, an emerging model bacterium in Streptomyces research.


Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae.

  • Paula Yagüe‎ et al.
  • Nature communications‎
  • 2016‎

Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young vegetative hyphae of Streptomyces coelicolor, whereby 1 μm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth, but cross-membrane formation does not depend on FtsZ. Thus, a new level of hyphal organization is presented involving unprecedented high-frequency compartmentalization, which changes the old dogma that Streptomyces vegetative hyphae have scarce compartmentalization.


Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils.

  • Daniel C Schlatter‎ et al.
  • PloS one‎
  • 2019‎

Soil microbes live within highly complex communities, where community composition, function, and evolution are the product of diverse interactions among community members. Analysis of the complex networks of interactions within communities has the potential to shed light on community stability, functioning, and evolution. However, we have little understanding of the variation in interaction networks among coevolved soil populations. We evaluated networks of antibiotic inhibitory interactions among sympatric Streptomyces communities from prairie soil. Inhibition networks differed significantly in key network characteristics from expectations under null models, largely reflecting variation among Streptomyces in the number of sympatric populations that they inhibited. Moreover, networks of inhibitory interactions within Streptomyces communities differed significantly from each other, suggesting unique network structures among soil communities from different locations. Analyses of tri-partite interactions (triads) showed that some triads were significantly over- or under- represented, and that communities differed in 'preferred' triads. These results suggest that local processes generate distinct structures among sympatric Streptomyces inhibition networks in soil. Understanding the properties of microbial interaction networks that generate competitive and functional capacities of soil communities will shed light on the ecological and coevolutionary history of sympatric populations, and provide a foundation for more effective management of inhibitory capacities of soil microbial communities.


New Kendomycin Derivative Isolated from Streptomyces sp. Cl 58-27.

  • Constanze Paulus‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

In the course of screening new streptomycete strains, the strain Streptomyces sp. Cl 58-27 caught our attention due to its interesting secondary metabolite production profile. Here, we report the isolation and characterization of an ansamycin natural product that belongs structurally to the already known kendomycins. The structure of the new kendomycin E was elucidated using NMR spectroscopy, and the corresponding biosynthetic gene cluster was identified by sequencing the genome of Streptomyces sp. Cl 58-27 and conducting a detailed analysis of secondary metabolism gene clusters using bioinformatic tools.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: