Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 papers out of 201 papers

MovieMaker: a web server for rapid rendering of protein motions and interactions.

  • Rajarshi Maiti‎ et al.
  • Nucleic acids research‎
  • 2005‎

MovieMaker is a web server that allows short ( approximately 10 s), downloadable movies of protein motions to be generated. It accepts PDB files or PDB accession numbers as input and automatically calculates, renders and merges the necessary image files to create colourful animations covering a wide range of protein motions and other dynamic processes. Users have the option of animating (i) simple rotation, (ii) morphing between two end-state conformers, (iii) short-scale, picosecond vibrations, (iv) ligand docking, (v) protein oligomerization, (vi) mid-scale nanosecond (ensemble) motions and (vii) protein folding/unfolding. MovieMaker does not perform molecular dynamics calculations. Instead it is an animation tool that uses a sophisticated superpositioning algorithm in conjunction with Cartesian coordinate interpolation to rapidly and automatically calculate the intermediate structures needed for many of its animations. Users have extensive control over the rendering style, structure colour, animation quality, background and other image features. MovieMaker is intended to be a general-purpose server that allows both experts and non-experts to easily generate useful, informative protein animations for educational and illustrative purposes. MovieMaker is accessible at http://wishart.biology.ualberta.ca/moviemaker.


ClC-3 regulates the excitability of nociceptive neurons and is involved in inflammatory processes within the spinal sensory pathway.

  • Juan Sierra-Marquez‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2022‎

ClC-3 Cl-/H+ exchangers are expressed in multiple endosomal compartments and likely modify intra-endosomal pH and [Cl-] via the stoichiometrically coupled exchange of two Cl- ions and one H+. We studied pain perception in Clcn3-/- mice and found that ClC-3 not only modifies the electrical activity of peripheral nociceptors but is also involved in inflammatory processes in the spinal cord. We demonstrate that ClC-3 regulates the number of Na v and K v ion channels in the plasma membrane of dorsal root ganglion (DRG) neurons and that these changes impair the age-dependent decline in excitability of sensory neurons. To distinguish the role of ClC-3 in Cl-/H+ exchange from its other functions in pain perception, we used mice homozygous for the E281Q ClC-3 point mutation (Clcn3E281Q/E281Q ), which completely eliminates transport activity. Since ClC-3 forms heterodimers with ClC-4, we crossed these animals with Clcn4 -/- to obtain mice completely lacking in ClC-3-associated endosomal chloride-proton transport. The electrical properties of Clcn3 E281Q/E281Q /Clcn4-/- DRG neurons were similar to those of wild-type cells, indicating that the age-dependent adjustment of neuronal excitability is independent of ClC-3 transport activity. Both Clcn3-/- and Clcn3E281Q/E281Q /Clcn4 -/- animals exhibited microglial activation in the spinal cord, demonstrating that competent ClC-3 transport is needed to maintain glial cell homeostasis. Our findings illustrate how reduced Cl-/H+ exchange contributes to inflammatory responses and demonstrate a role for ClC-3 in the homeostatic regulation of neuronal excitability beyond its function in endosomal ion balance.


Induction of ectopic retina-like tissue by transgenic expression of neurogenin.

  • Run-Tao Yan‎ et al.
  • PloS one‎
  • 2015‎

Degeneration of retinal neurons is an underlying cause of several major types of blinding diseases, and effective therapies remain to be developed. The suppositive strategy of repopulating a degenerative retina with new cells generated onsite faces serious challenges, because the mammalian retina seems to lack the ability to regenerate itself or replace its lost neurons. We investigated the possibility of using a transcriptional factor with proneural activities to reprogram ocular tissue with regenerative capability to give rise to retinal cells. Transgenic mice were generated with DNA constructs that targeted the expression in the retinal pigment epithelium of proneural gene neurogenin1 from the promoter of Bestrophin1, or neurogenin3 from RPE65 promoter. Here we report the presence of ectopic retina-like tissue in some of the transgenic mice, young and aged. The ectopic retina-like tissue contained cells positive for photoreceptor proteins Crx, recoverin, red opsin, and rhodopsin, and cells positive for proteins that label other types of retinal neurons, including AP2α and Pax6 for amacrine cells, Otx2 for bipolar cells, and Brn3A for ganglion cells. The retina-like tissue often co-existed with darkly pigmented tissue positive for RPE proteins: cytokeratin 18, Otx2, and RPE65. The ectopic retina-like tissue was detected in the subretinal space, including two retinae co-existing in the same eye, and/or in the optic nerve or in the vicinity of the optic nerve head. On rare occasions, it was detected in the choroid and in the vicinity of the ciliary body. The presence of ectopic retina-like tissue in the transgenic mouse supports the possibility of inducing retinal regeneration in the mammalian eyes through gene-directed reprograming.


REST, regulated by RA through miR-29a and the proteasome pathway, plays a crucial role in RPC proliferation and differentiation.

  • Yuyao Wang‎ et al.
  • Cell death & disease‎
  • 2018‎

One of the primary obstacles in the application of retinal progenitor cells (RPCs) to the treatment of retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), is their limited ability to proliferate and differentiate into specific retinal neurons. In this study, we revealed that repressor element-1-silencing transcription factor (REST), whose expression could be transcriptionally and post-transcriptionally mediated by retinoic acid (RA, one isomeride of a vitamin A derivative used as a differentiation-inducing agent in many disease treatments), plays a pivotal role in the regulation of proliferation and differentiation of RPCs. Our results show that direct knockdown of endogenous REST reduced RPC proliferation but accelerated RPC differentiation toward retinal neurons, which phenocopied the observed effects of RA on RPCs. Further studies disclosed that the expression level of REST could be downregulated by RA not only through upregulating microRNA (miR)-29a, which directly interacted with the 3'-untranslated region (3'-UTR) of the REST mRNA, but also through promoting REST proteasomal degradation. These results show us a novel functional protein, REST, which regulates RPC proliferation and differentiation, can be mediated by RA. Understanding the mechanisms of REST and RA in RPC fate determination enlightens a promising future for the application of REST and RA in the treatment of retinal degeneration diseases.


Immunocytochemical analysis of GABA-positive and calretinin-positive horizontal cells in the tiger salamander retina.

  • Jian Zhang‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

By using immunocytochemical techniques, we demonstrate that there are two distinct, nonoverlapping populations of horizontal cells (HCs) in the tiger salamander retina: GABA-positive cells account for about 72% and GABA-negative (calretinin-positive) cells account for 28% of the total HC somas. The calretinin-positive HCs have relatively sparse and thick dendrites: soma diameter of 19.72 +/- 0.29 microm, and soma density of 140 +/- 13 cells/mm(2), morphological features very much like the A-type HCs described in the accompanying article. The GABA-positive HCs have thinner dendritic and coarse axon-terminal-like processes of higher density: soma diameter of 18 +/- 0.18 microm, and soma density of 364 +/- 18 cells/mm(2), features that very much resemble the B-type HCs and B-type HC axon terminals in the accompanying article. By using double and triple immunostaining techniques we found that only 18% of the non-GABAergic HC dendritic clusters contact rods, whereas the remaining 82% of the dendritic clusters contact cones. This is consistent with the physiological finding in the accompanying article that the A-type HCs are cone-dominated. On the other hand, 32% of GABAergic HC dendrites contact rod pedicles and 68% contact cone pedicles, consistent with the physiological finding that B-type HCs and B-type HC axon terminals receive mixed rod/cone inputs. Detailed confocal microscope analysis shows that 4% rods, 6% principal double cones/single cones, and 100% accessory double cones contact calretinin-positive HCs, and 79% rods, 100% principal double cones, 14% accessory double cones, and 82% single cones contact GABAergic HCs. These results suggest that GABAergic and non-GABAergic HC input/output synapses differ and they may mediate different functional pathways in the outer retina.


Eupatilin improves cilia defects in human CEP290 ciliopathy models.

  • J C Corral-Serrano‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The photoreceptor outer segment is a highly specialized primary cilium essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290 , there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290 -related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids, by modulating the expression of rhodopsin, and by targeting cilia and synaptic plasticity pathways. This work sheds light into the mechanism of action of eupatilin, and supports its potential as a variant-independent approach for CEP290 -associated ciliopathies.


Structural insights for activation of retinal guanylate cyclase by GCAP1.

  • Sunghyuk Lim‎ et al.
  • PloS one‎
  • 2013‎

Guanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor (NCS) subclass of the calmodulin superfamily, confers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1) upon light activation of photoreceptor cells. Here we present NMR assignments and functional analysis to probe Ca(2+)-dependent structural changes in GCAP1 that control activation of RetGC. NMR assignments were obtained for both the Ca(2+)-saturated inhibitory state of GCAP1 versus a GCAP1 mutant (D144N/D148G, called EF4mut), which lacks Ca(2+) binding in EF-hand 4 and models the Ca(2+)-free/Mg(2+)-bound activator state of GCAP1. NMR chemical shifts of backbone resonances for Ca(2+)-saturated wild type GCAP1 are overall similar to those of EF4mut, suggesting a similar main chain structure for assigned residues in both the Ca(2+)-free activator and Ca(2+)-bound inhibitor states. This contrasts with large Ca(2+)-induced chemical shift differences and hence dramatic structural changes seen for other NCS proteins including recoverin and NCS-1. The largest chemical shift differences between GCAP1 and EF4mut are seen for residues in EF4 (S141, K142, V145, N146, G147, G149, E150, L153, E154, M157, E158, Q161, L166), but mutagenesis of EF4 residues (F140A, K142D, L153R, L166R) had little effect on RetGC1 activation. A few GCAP1 residues in EF-hand 1 (K23, T27, G32) also show large chemical shift differences, and two of the mutations (K23D and G32N) each decrease the activation of RetGC, consistent with a functional conformational change in EF1. GCAP1 residues at the domain interface (V77, A78, L82) have NMR resonances that are exchange broadened, suggesting these residues may be conformationally dynamic, consistent with previous studies showing these residues are in a region essential for activating RetGC1.


A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods.

  • Charlotte Johanna Beelen‎ et al.
  • Computational and structural biotechnology journal‎
  • 2021‎

The phototransduction cascade is paradigmatic for signaling pathways initiated by G protein-coupled receptors and is characterized by a fine regulation of photoreceptor sensitivity and electrical response to a broad range of light stimuli. Here, we present a biochemically comprehensive model of phototransduction in mouse rods based on a hybrid stochastic and deterministic mathematical framework, and a quantitatively accurate description of the rod impedance in the dark. The latter, combined with novel patch clamp recordings from rod outer segments, enables the interconversion of dim flash responses between photovoltage and photocurrent and thus direct comparison with the simulations. The model reproduces the salient features of the experimental photoresponses at very dim and bright stimuli, for both normal photoreceptors and those with genetically modified cascade components. Our modelling approach recapitulates a number of recent findings in vertebrate phototransduction. First, our results are in line with the recently established requirement of dimeric activation of PDE6 by transducin and further show that such conditions can be fulfilled at the expense of a significant excess of G protein activated by rhodopsin. Secondly, simulations suggest a crucial role of the recoverin-mediated Ca2+-feedback on rhodopsin kinase in accelerating the shutoff, when light flashes are delivered in the presence of a light background. Finally, stochastic simulations suggest that transient complexes between dark rhodopsin and transducin formed prior to light stimulation increase the reproducibility of single photon responses. Current limitations of the model are likely associated with the yet unknown mechanisms governing the shutoff of the cascade.


Retinal amino acid neurochemistry of the southern hemisphere lamprey, Geotria australis.

  • Lisa Nivison-Smith‎ et al.
  • PloS one‎
  • 2013‎

Lampreys are one of the two surviving groups of the agnathan (jawless) stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB) to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells are more sensitive to environmental changes associated with migration.


Temporal profiling of photoreceptor lineage gene expression during murine retinal development.

  • Tooka Aavani‎ et al.
  • Gene expression patterns : GEP‎
  • 2017‎

Rod and cone photoreceptors are photosensitive cells in the retina that convert light to electrical signals that are transmitted to visual processing centres in the brain. During development, cones and rods are generated from a common pool of multipotent retinal progenitor cells (RPCs) that also give rise to other retinal cell types. Cones and rods differentiate in two distinct waves, peaking in mid-embryogenesis and the early postnatal period, respectively. As RPCs transition from making cones to generating rods, there are changes in the expression profiles of genes involved in photoreceptor cell fate specification and differentiation. To better understand the temporal transition from cone to rod genesis, we assessed the timing of onset and offset of expression of a panel of 11 transcription factors and 7 non-transcription factors known to function in photoreceptor development, examining their expression between embryonic day (E) 12.5 and postnatal day (P) 60. Transcription factor expression in the photoreceptor layer was observed as early as E12.5, beginning with Crx, Otx2, Rorb, Neurod1 and Prdm1 expression, followed at E15.5 with the expression of Thrb, Neurog1, Sall3 and Rxrg expression, and at P0 by Nrl and Nr2e3 expression. Of the non-transcription factors, peanut agglutinin lectin staining and cone arrestin protein were observed as early as E15.5 in the developing outer nuclear layer, while transcripts for the cone opsins Opn1mw and Opn1sw and Recoverin protein were detected in photoreceptors by P0. In contrast, Opn1mw and Opn1sw protein were not observed in cones until P7, when rod-specific Gnat1 transcripts and rhodopsin protein were also detected. We have thus identified four transitory stages during murine retina photoreceptor differentiation marked by the period of onset of expression of new photoreceptor lineage genes. By characterizing these stages, we have clarified the dynamic nature of gene expression during the period when photoreceptor identities are progressively acquired during development.


Changes in retinal morphology, electroretinogram and visual behavior after transient global ischemia in adult rats.

  • Ying Zhao‎ et al.
  • PloS one‎
  • 2013‎

The retina is a light-sensitive tissue of the central nervous system that is vulnerable to ischemia. The pathological mechanism underlying retinal ischemic injury is not fully understood. The purpose of this study was to investigate structural and functional changes of different types of rat retinal neurons and visual behavior following transient global ischemia. Retinal ischemia was induced using a 4-vessel occlusion model. Compared with the normal group, the number of βIII-tubulin positive retinal ganglion cells and calretinin positive amacrine cells were reduced from 6 h to 48 h following ischemia. The number of recoverin positive cone bipolar cells transiently decreased at 6 h and 12 h after ischemia. However, the fluorescence intensity of rhodopsin positive rod cells and fluorescent peanut agglutinin positive cone cells did not change after reperfusion. An electroretinogram recording showed that the a-wave, b-wave, oscillatory potentials and the photopic negative response were completely lost during ischemia. The amplitudes of the a- and b-waves were partially recovered at 1 h after ischemia, and returned to the control level at 48 h after reperfusion. However, the amplitudes of oscillatory potentials and the photopic negative response were still reduced at 48 h following reperfusion. Visual behavior detection showed there was no significant change in the time spent in the dark chamber between the control and 48 h group, but the distance moved, mean velocity in the black and white chambers and intercompartmental crosses were reduced at 48 h after ischemia. These results indicate that transient global ischemia induces dysfunction of retinal ganglion cells and amacrine cells at molecular and ERG levels. However, transient global ischemia in a 17 minute duration does not appear to affect photoreceptors.


A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light.

  • Frans Vinberg‎ et al.
  • The Journal of general physiology‎
  • 2015‎

Sensory cells adjust their sensitivity to incoming signals, such as odor or light, in response to changes in background stimulation, thereby extending the range over which they operate. For instance, rod photoreceptors are extremely sensitive in darkness, so that they are able to detect individual photons, but remain responsive to visual stimuli under conditions of bright ambient light, which would be expected to saturate their response given the high gain of the rod transduction cascade in darkness. These photoreceptors regulate their sensitivity to light rapidly and reversibly in response to changes in ambient illumination, thereby avoiding saturation. Calcium ions (Ca2+) play a major role in mediating the rapid, subsecond adaptation to light, and the Ca2+-binding proteins GCAP1 and GCAP2 (or guanylyl cyclase-activating proteins [GCAPs]) have been identified as important mediators of the photoreceptor response to changes in intracellular Ca2+. However, mouse rods lacking both GCAP1 and GCAP2 (GCAP-/-) still show substantial light adaptation. Here, we determined the Ca2+ dependency of this residual light adaptation and, by combining pharmacological, genetic, and electrophysiological tools, showed that an unknown Ca2+-dependent mechanism contributes to light adaptation in GCAP-/- mouse rods. We found that mimicking the light-induced decrease in intracellular [Ca2+] accelerated recovery of the response to visual stimuli and caused a fourfold decrease of sensitivity in GCAP-/- rods. About half of this Ca2+-dependent regulation of sensitivity could be attributed to the recoverin-mediated pathway, whereas half of it was caused by the unknown mechanism. Furthermore, our data demonstrate that the feedback mechanisms regulating the sensitivity of mammalian rods on the second and subsecond time scales are all Ca2+ dependent and that, unlike salamander rods, Ca2+-independent background-induced acceleration of flash response kinetics is rather weak in mouse rods.


Expression of synaptic and phototransduction markers during photoreceptor development in the marmoset monkey Callithrix jacchus.

  • Anita Hendrickson‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

Marmoset photoreceptor development was studied to determine the expression sequence for synaptic, opsin, and phototransduction proteins. All markers appear first in cones within the incipient foveal center or in rods at the foveal edge. Recoverin appears in cones across 70% of the retina at fetal day (Fd) 88, indicating that it is expressed shortly after photoreceptors are generated. Synaptic markers synaptophysin, SV2, glutamate vesicular transporter 1, and CTBP2 label foveal cones at Fd 88 and cones at the retinal edge around birth. Cones and rods have distinctly different patterns of synaptic protein and opsin expression. Synaptic markers are expressed first in cones, with a considerable delay before they appear in rods at the same eccentricity. Cones express synaptic markers 2-3 weeks before they express opsin, but rods express opsin 2-4 weeks before rod synaptic marker labeling is detected. Medium/long-wavelength-selective (M&L) opsin appears in foveal cones and rod opsin in rods around the fovea at Fd 100. Very few cones expressing short-wavelength-selective (S) opsin are found in the Fd 105 fovea. Across peripheral retina, opsin appears first in rods, followed about 1 week later by M&L cone opsin. S cone opsin appears last, and all opsins reach the retinal edge by 1 week after birth. Cone transducin and rod arrestin are expressed concurrently with opsin, but cone arrestin appears slightly later. Marmoset photoreceptor development differs from that in Macaca and humans. It starts relatively late, at 56% gestation, compared with Macaca at 32% gestation. The marmoset opsin expression sequence is also different from that of either Macaca or human.


Targeted deletion of miR-182, an abundant retinal microRNA.

  • Zi-Bing Jin‎ et al.
  • Molecular vision‎
  • 2009‎

MicroRNA-182 (miR-182) is expressed abundantly in the mammalian retina and is therefore thought to perform important roles for the retinal development and the function. To test this hypothesis, we generated miR-182 knockout mice.


Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth.

  • Alicia Pérez Saturnino‎ et al.
  • Development (Cambridge, England)‎
  • 2018‎

Patterning of a continuously growing naive field in the context of a life-long growing organ such as the teleost eye is of high functional relevance. Intrinsic and extrinsic signals have been proposed to regulate lineage specification in progenitors that exit the stem cell niche in the ciliary marginal zone (CMZ). The proper cell-type composition arising from those progenitors is a prerequisite for retinal function. Our findings in the teleost medaka (Oryzias latipes) uncover that the Notch-Atoh7 axis continuously patterns the CMZ. The complement of cell types originating from the two juxtaposed progenitors marked by Notch or Atoh7 activity contains all constituents of a retinal column. Modulation of Notch signalling specifically in Atoh7-expressing cells demonstrates the crucial role of this axis in generating the correct cell-type proportions. After transiently blocking Notch signalling, retinal patterning and differentiation is re-initiated de novo Taken together, our data show that Notch activity in the CMZ continuously structures the growing retina by juxtaposing Notch and Atoh7 progenitors that give rise to distinct complementary lineages, revealing coupling of de novo patterning and cell-type specification in the respective lineages.


Using inducible lentiviral vectors to generate induced pluripotent stem cell line ZOCi001-A from peripheral blood cells of a patient with CRB1-/- retinitis pigmentosa.

  • Xiangcheng Tang‎ et al.
  • Stem cell research‎
  • 2020‎

We isolated peripheral blood mononuclear cells from a patient diagnosed with early-onset non-syndromic retinitis pigmentosa caused by compound heterozygous mutations in CRB1 (NM_001257965): c.1369C>T (p.R457X) and c.2027C>T (p.T676M). These cells were transfected with four inducible plasmids encoding human OCT4, SOX2, KLF4 or C-MYC together. Transfected cells were induced to form pluripotent stem cells (iPSCs) expressing the pluripotent stem cell markers SOX2, OCT4, KLF4, SSEA4 and NANOG and presenting a normal karyotype. These cells could be differentiated into three germ layers as well as retinal organoids, and thus provide a valuable cellular model for the study of development of major retina diseases.


Conformational regulation and target-myristoyl switch of calcineurin B homologous protein 3.

  • Florian Becker‎ et al.
  • eLife‎
  • 2023‎

Calcineurin B homologous protein 3 (CHP3) is an EF-hand Ca2+-binding protein involved in regulation of cancerogenesis, cardiac hypertrophy, and neuronal development through interactions with sodium/proton exchangers (NHEs) and signalling proteins. While the importance of Ca2+ binding and myristoylation for CHP3 function has been recognized, the underlying molecular mechanism remained elusive. In this study, we demonstrate that Ca2+ binding and myristoylation independently affect the conformation and functions of human CHP3. Ca2+ binding increased local flexibility and hydrophobicity of CHP3 indicative of an open conformation. The Ca2+-bound CHP3 exhibited a higher affinity for NHE1 and associated stronger with lipid membranes compared to the Mg2+-bound CHP3, which adopted a closed conformation. Myristoylation enhanced the local flexibility of CHP3 and decreased its affinity to NHE1 independently of the bound ion, but did not affect its binding to lipid membranes. The data exclude the proposed Ca2+-myristoyl switch for CHP3. Instead, a Ca2+-independent exposure of the myristoyl moiety is induced by binding of the target peptide to CHP3 enhancing its association to lipid membranes. We name this novel regulatory mechanism 'target-myristoyl switch'. Collectively, the interplay of Ca2+ binding, myristoylation, and target binding allows for a context-specific regulation of CHP3 functions.


Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity.

  • Gema Esquiva‎ et al.
  • Frontiers in neuroanatomy‎
  • 2016‎

The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.


Autologous fibrin glue as an encapsulating scaffold for delivery of retinal progenitor cells.

  • Tamer A E Ahmed‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2014‎

The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG) produced by the CryoSeal(®)FS system in combination with mouse retinal progenitor cells (RPCs) were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD-independent mechanism. The three-dimensional environment and the attachment surface provided by FG was associated with a rapid down-regulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers cone-rod homeobox and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors.


Evolutionary-Conserved Allosteric Properties of Three Neuronal Calcium Sensor Proteins.

  • Valerio Marino‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2019‎

Neuronal Calcium Sensors (NCS) are highly conserved proteins specifically expressed in neurons. Calcium (Ca2+)-binding to their EF-hand motifs results in a conformational change, which is crucial for the recognition of a specific target and the downstream biological process. Here we present a comprehensive analysis of the allosteric communication between Ca2+-binding sites and the target interfaces of three NCS, namely NCS1, recoverin (Rec), and GCAP1. In particular, Rec was investigated in different Ca2+-loading states and in complex with a peptide from the Rhodopsin Kinase (GRK1) while NCS1 was studied in a Ca2+-loaded state in complex with either the same GRK1 target or a peptide from the D2 Dopamine receptor. A Protein Structure Network (PSN) accounting for persistent non-covalent interactions between amino acids was built for each protein state based on exhaustive Molecular Dynamics simulations. Structural network analysis helped unveiling the role of key amino acids in allosteric mechanisms and their evolutionary conservation among homologous proteins. Results for NCS1 highlighted allosteric inter-domain interactions between Ca2+-binding motifs and residues involved in target recognition. Robust long range, allosteric protein-target interactions were found also in Rec, in particular originating from the EF3 motif. Interestingly, Tyr 86, involved the hydrophobic packing of the N-terminal domain, was found to be a key residue for both intra- and inter-molecular communication with EF3, regardless of the presence of target or Ca2+ ions. Finally, based on a comprehensive topological PSN analysis for Rec, NCS1, and GCAP1 and multiple sequence alignments with homolog proteins, we propose that an evolution-driven correlation may exist between the amino acids mediating the highest number of persistent interactions (high-degree hubs) and their conservation. Such conservation is apparently fundamental for the specific structural dynamics required in signaling events.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: