Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 papers out of 665 papers

Pure Ion Chromatograms Combined with Advanced Machine Learning Methods Improve Accuracy of Discriminant Models in LC-MS-Based Untargeted Metabolomics.

  • Miao Tian‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Untargeted metabolomics based on liquid chromatography coupled with mass spectrometry (LC-MS) can detect thousands of features in samples and produce highly complex datasets. The accurate extraction of meaningful features and the building of discriminant models are two crucial steps in the data analysis pipeline of untargeted metabolomics. In this study, pure ion chromatograms were extracted from a liquor dataset and left-sided colon cancer (LCC) dataset by K-means-clustering-based Pure Ion Chromatogram extraction method version 2.0 (KPIC2). Then, the nonlinear low-dimensional embedding by uniform manifold approximation and projection (UMAP) showed the separation of samples from different groups in reduced dimensions. The discriminant models were established by extreme gradient boosting (XGBoost) based on the features extracted by KPIC2. Results showed that features extracted by KPIC2 achieved 100% classification accuracy on the test sets of the liquor dataset and the LCC dataset, which demonstrated the rationality of the XGBoost model based on KPIC2 compared with the results of XCMS (92% and 96% for liquor and LCC datasets respectively). Finally, XGBoost can achieve better performance than the linear method and traditional nonlinear modeling methods on these datasets. UMAP and XGBoost are integrated into KPIC2 package to extend its performance in complex situations, which are not only able to effectively process nonlinear dataset but also can greatly improve the accuracy of data analysis in non-target metabolomics.


The influence of PM2.5 on lung injury and cytokines in mice.

  • Jie Yang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Exposure to particulate matter ≤2.5 µm in diameter (PM2.5) profoundly affects human health. However, the role of PM2.5 on lung injury and cytokine levels in mice is currently unknown. The aim was to examine the effect of PM2.5 pollution on lung injury in mice fed at an underground parking lot. A total of 20 female Kunming mice were randomly divided into control and polluted groups, with 10 rats in each group. The control group was kept in the laboratory, while the pollution group was fed in an underground parking lot. The concentrations of pollutants were measured using ambient air quality monitoring instruments. After 3 months of treatment, the lungs were collected and examined using electron microscopy, and the morphological structures were assessed using hematoxylin and eosin staining. The polarization of macrophages was evaluated by immunofluorescence. The concentration of interleukin (IL)-4, tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 in peripheral sera were assessed by ELISA. The mRNA and protein levels of IL-4, TNF-α, and TGF-β1 in lung tissues were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. In the polluted group, the levels of CO, NOx and PM2.5 were significantly higher compared with the control group. Compared with the controls, intracellular edema, an increased number of microvilli and lamellar bodies, smaller lamellar bodies in type II alveolar epithelial cells, and abundant particles induced by PM2.5 in macrophages were observed in the polluted group. The lung ultrastructure changed in the polluted group, revealing exhaust-induced lung injury: The tissues were damaged, and the number of inflammatory cells, neutrophils, polylymphocytes and eosinophils increased in the polluted group compared with the control group. The authors also observed that the number of M1 and M2 macrophages markedly increased after the exhaust treatment. The levels of IL-4, TNF-α and TGF-β1 in the sera and tissues were significantly increased in the polluted group. PM2.5 pollutants in underground garages can lead to lung injury and have a significant impact on the level of inflammatory cytokines in mice. Therefore, the authors suggest that PM2.5 can activate the inflammatory reaction and induce immune dysfunction, leading to ultrastructural damage.


Berberine Ameliorates Metabolic-Associated Fatty Liver Disease Mediated Metabolism Disorder and Redox Homeostasis by Upregulating Clock Genes: Clock and Bmal1 Expressions.

  • Cunsi Ye‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases, which in turn triggers mild inflammation, metabolic dysfunction, fibrosis, and even cancer. Accumulating evidence has suggested that Berberine (BBR) could significantly improve MAFLD progression. Clock and Bmal1 as heterodimer proteins highly participated in the development of MAFLD, but whether BBR targets Clock and Bmal1 in MAFLD remains poorly understood. The result suggested that the protein levels of Clock and Bmal1 were decreased in MAFLD mice, which was negatively correlated with elevated reactive oxygen species (ROS) accumulation, the H2O2 level, liver inflammation, metabolic dysfunction, and insulin resistance. The mRNA and protein levels of Clock and Bmal1 were also decreased in glucosamine-induced HepG2 cells, which were are negatively related to glucose uptake, the ROS level, and the H2O2 level. More importantly, Bmal1 siRNA could mimic the effect of glucosamine in HepG2 cells. Interestingly, Berberine (BBR) could rescue metabolism disorder and redox homeostasis through enhancing Clock and Bmal1 expression in vivo and in vitro. Therefore, BBR might be an effective natural compound for alleviating redox homeostasis, metabolism disorder, and liver pathological changes in MAFLD by activating Clock and Bmal1 expression.


Incidence of Thrombosis at Different Sites During the Follow-Up Period in Essential Thrombocythemia: A Systematic Review and Meta-Analysis.

  • Dehao Wang‎ et al.
  • Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis‎
  • 2023‎

Thrombotic events are the most frequent manifestations of essential thrombocythemia (ET). The objective of this study is to determine the incidence of thrombosis at different sites on follow-up in patients with ET. We searched PubMed, Web of Science, and The Cochrane Library databases and calculated the incidence of thrombosis by pooling and analyzing the extracted data using a random-effects model. A total of 70 studies (N  =  25,805) were included in the analysis. The total and annual incidences of arterial thrombosis on follow-up were 13.4% and 2.0%, respectively. The total and annual incidences of the different manifestations of arterial thrombosis were as follows: stroke (5.3% and 0.8%), transient ischemic attack (5.1% and 1.2%), myocardial infarction (2.4% and 0.5%), unstable angina (0.9% and 0.2%), and peripheral arterial thrombosis (2.0% and 0.2%), respectively. In contrast, the total and annual incidences of arterial thrombosis in JAK2-positive patients were 18.4% and 2.7%, respectively. The total and annual incidences of arterial thrombosis in JAK2-negative patients were 5.9% and 0.8%, respectively. The total and annual incidences of venous thrombosis were 5.5% and 0.7%, respectively, and the incidences of the different manifestations of venous thrombosis at different sites were as follows: peripheral venous thrombosis (2.9% and 0.5%), superficial venous thrombosis (1.8% and 0.7%), deep venous thrombosis (1.6% and 0.3%), abdominal venous thrombosis (0.8% and 0.1%), pulmonary embolism (0.3% and 0.1%), and cerebral venous thrombosis (0.2% and 0%), respectively. The total and annual incidences of venous thrombosis in JAK2-positive patients were 7.4% and 1.2%, respectively. The total and annual incidences of venous thrombosis in JAK2-negative patients were 1.6% and 0.4%, respectively. The incidence of arterial thrombosis was higher than that of venous thrombosis in patients with ET. Arterial thrombosis manifested with cerebral arterial thrombosis, followed by cardiac thrombosis. Venous thrombosis events were mainly peripheral and superficial venous thrombosis. JAK2-positive patients have a higher incidence of arterial and venous thromboses than JAK2-negative patients, the sequence of thrombsis sites was similar to that of the overall patients.


A Rift Valley fever mRNA vaccine elicits strong immune responses in mice and rhesus macaques.

  • Ting Bian‎ et al.
  • NPJ vaccines‎
  • 2023‎

Rift Valley fever virus (RVFV) is listed as a priority pathogen by the World Health Organization (WHO) because it causes serious and fatal disease in humans, and there are currently no effective countermeasures. Therefore, it is urgent to develop a safe and efficacious vaccine. Here, we developed six nucleotide-modified mRNA vaccines encoding different regions of the Gn and Gc proteins of RVFV encapsulated in lipid nanoparticles, compared their ability to induce immune responses in mice and found that mRNA vaccine encoding the full-length Gn and Gc proteins had the strongest ability to induce cellular and humoral immune responses. IFNAR(-/-) mice vaccinated with mRNA-GnGc were protected from lethal RVFV challenge. In addition, mRNA-GnGc induced high levels of neutralizing antibodies and cellular responses in rhesus macaques, as well as antigen-specific memory B cells. These data demonstrated that mRNA-GnGc is a potent and promising vaccine candidate for RVFV.


Intact regulation of G1/S transition renders esophageal squamous cell carcinoma sensitive to PI3Kα inhibitors.

  • Xu Zhang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2023‎

Phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitors are currently evaluated for the therapy of esophageal squamous cell carcinoma (ESCC). It is of great importance to identify potential biomarkers to predict or monitor the efficacy of PI3Kα inhibitors in an aim to improve the clinical responsive rate in ESCC. Here, ESCC PDXs with CCND1 amplification were found to be more sensitive to CYH33, a novel PI3Kα-selective inhibitor currently in clinical trials for the treatment of advanced solid tumors including ESCC. Elevated level of cyclin D1, p21 and Rb was found in CYH33-sensitive ESCC cells compared to those in resistant cells. CYH33 significantly arrested sensitive cells but not resistant cells at G1 phase, which was associated with accumulation of p21 and suppression of Rb phosphorylation by CDK4/6 and CDK2. Hypo-phosphorylation of Rb attenuated the transcriptional activation of SKP2 by E2F1, which in turn hindered SKP2-mediated degradation of p21 and reinforced accumulation of p21. Moreover, CDK4/6 inhibitors sensitized resistant ESCC cells and PDXs to CYH33. These findings provided mechanistic rationale to evaluate PI3Kα inhibitors in ESCC patients harboring amplified CCND1 and the combined regimen with CDK4/6 inhibitors in ESCC with proficient Rb.


Draft Genome Sequences of Closely Related Listeria monocytogenes Lineage III Strains Isolated from a Food Processing Environment and a Case of Human Listeriosis.

  • Phillip Brown‎ et al.
  • Microbiology resource announcements‎
  • 2023‎

Listeria monocytogenes lineage III is genetically highly diverse, and closely related lineage III strains from food facilities and human listeriosis have not been reported. Here, we report the genome sequences of three closely related lineage III strains from Hawaii, namely, one isolated from a human case and two isolated from a produce storage facility.


Polydopamine-cladded montmorillonite micro-sheets as therapeutic platform repair the gut mucosal barrier of murine colitis through inhibiting oxidative stress.

  • Gaolong Lin‎ et al.
  • Materials today. Bio‎
  • 2023‎

Montmorillonite (MMT), a layered aluminosilicate, has a mucosal nutrient effect and restores the gut barriers integrity. However, orally administrating MMT is not effective to combat the reactive oxygen species (ROS) and alleviate the acute inflammatory relapse for colitis patients. Herein, polydopamine-doped montmorillonite micro-sheets (PDA/MMT) have been developed as a therapeutic platform for colitis treatment. SEM and EDS analysis showed that dopamine monomer (DA) was easily polymerized in alkaline condition and polydopamine (PDA) was uniformly cladded on the surface of MMT micro-sheets. The depositing amount of PDA was reaching to 2.06 ​± ​0.08%. Moreover, in vitro fluorescence probes experiments showed that PDA/MMT presented the broad spectra of scavenging various ROS sources including •OH, •O2-, and H2O2. Meanwhile, the intracellular ROS of Rosup/H2O2 treated Caco-2 ​cell was also effectively scavenged by PDA/MMT, which resulted in the obvious improvement of the cell viability under oxidative stress. Moreover, most of orally administrated PDA/MMT was transited to the gut and form a protective film on the diseased colon. PDA/MMT exhibited the obvious therapeutic effect on DSS-induced ulcerative colitis mouse. Importantly, the gut mucosa of colitis mouse was well restored after PDA/MMT treatment. Moreover, the colonic inflammation was significantly alleviated and the goblet cells were obliviously recovered. The therapeutic mechanism of PDA/MMT was highly associated with inhibiting oxidative stress. Collectively, PDA/MMT micro-sheets as a therapeutic platform may provide a promising therapeutic strategy for UC treatment.


Genomic Characterization of Listeria innocua Isolates Recovered from Cattle Farms, Beef Abattoirs, and Retail Outlets in Gauteng Province, South Africa.

  • James Gana‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Whole-genome sequencing (WGS) was used for the genomic characterization of one hundred and ten strains of Listeria innocua (L. innocua) isolated from twenty-three cattle farms, eight beef abattoirs, and forty-eight retail outlets in Gauteng province, South Africa. In silico multilocus sequence typing (MLST) was used to identify the isolates' sequence types (STs). BLAST-based analyses were used to identify antimicrobial and virulence genes. The study also linked the detection of the genes to the origin (industries and types of samples) of the L. innocua isolates. The study detected 14 STs, 13 resistance genes, and 23 virulence genes. Of the 14 STs detected, ST637 (26.4%), ST448 (20%), 537 (13.6%), and 1085 (12.7%) were predominant, and the frequency varied significantly (p < 0.05). All 110 isolates of L. innocua were carriers of one or more antimicrobial resistance genes, with resistance genes lin (100%), fosX (100%), and tet(M) (30%) being the most frequently detected (p < 0.05). Of the 23 virulence genes recognized, 13 (clpC, clpE, clpP, hbp1, svpA, hbp2, iap/cwhA, lap, lpeA, lplA1, lspA, oatA, pdgA, and prsA2) were found in all 110 isolates of L. innocua. Overall, diversity and significant differences were detected in the frequencies of STs, resistance, and virulence genes according to the origins (source and sample type) of the L. innocua isolates. This, being the first genomic characterization of L. innocua recovered from the three levels/industries (farm, abattoir, and retail) of the beef production system in South Africa, provides data on the organism's distribution and potential food safety implications.


Radiographic and α-fetoprotein response predict pathologic complete response to immunotherapy plus a TKI in hepatocellular carcinoma: a multicenter study.

  • Cheng Huang‎ et al.
  • BMC cancer‎
  • 2023‎

Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear.


Ultrasensitive and multiplexed protein imaging with clickable and cleavable fluorophores.

  • Thai Pham‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity or technically demanding. To tackle these issues, here we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through reiterative cycles of target staining, fluorescence imaging, and fluoropohore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in a human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ~820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed different subregions of the tissue are composed of cells from specific clusters.


Costunolide alleviates hyperglycaemia-induced diabetic cardiomyopathy via inhibiting inflammatory responses and oxidative stress.

  • Bo Jin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2023‎

Hyperglycaemia-induced myocardial injury promotes the induction of heart failure in diabetic patients. Impaired antioxidant capability and sustained chronic inflammation play a vital role in the progression of diabetic cardiomyopathy (DCM). Costunolide (Cos), a natural compound with anti-inflammatory and antioxidant properties, has exhibited therapeutic effects in various inflammatory diseases. However, the role of Cos in diabetes-induced myocardial injury remains poorly understood. In this study, we investigated the effect of Cos on DCM and explored the potential mechanisms. C57BL/6 mice were administered intraperitoneal streptozotocin for DCM induction. Cos-mediated anti-inflammatory and antioxidation activities were examined in heart tissues of diabetic mice and high glucose (HG)-stimulated cardiomyocytes. Cos markedly inhibited HG-induced fibrotic responses in diabetic mice and H9c2 cells, respectively. The cardioprotective effects of Cos could be correlated to the reduced expression of inflammatory cytokines and decreased oxidative stress. Further investigations demonstrated Cos reversed diabetes-induced nuclear factor-κB (NF-κB) activation and alleviated impaired antioxidant defence system, principally via activation of nuclear factor-erythroid 2 p45-related factor-2 (Nrf-2). Cos alleviated cardiac damage and improved cardiac function in diabetic mice by inhibiting NF-κB-mediated inflammatory responses and activating the Nrf-2-mediated antioxidant effects. Therefore, Cos could be a potential candidate for the treatment of DCM.


From tuberculosis bedside to bench: UBE2B splicing as a potential biomarker and its regulatory mechanism.

  • Mengyuan Lyu‎ et al.
  • Signal transduction and targeted therapy‎
  • 2023‎

Alternative splicing (AS) is an important approach for pathogens and hosts to remodel transcriptome. However, tuberculosis (TB)-related AS has not been sufficiently explored. Here we presented the first landscape of TB-related AS by long-read sequencing, and screened four AS events (S100A8-intron1-retention intron, RPS20-exon1-alternaitve promoter, KIF13B-exon4-skipping exon (SE) and UBE2B-exon7-SE) as potential biomarkers in an in-house cohort-1. The validations in an in-house cohort-2 (2274 samples) and public datasets (1557 samples) indicated that the latter three AS events are potential promising biomarkers for TB diagnosis, but not for TB progression and prognosis. The excellent performance of classifiers further underscored the diagnostic value of these three biomarkers. Subgroup analyses indicated that UBE2B-exon7-SE splicing was not affected by confounding factors and thus had relatively stable performance. The splicing of UBE2B-exon7-SE can be changed by heat-killed mycobacterium tuberculosis through inhibiting SRSF1 expression. After heat-killed mycobacterium tuberculosis stimulation, 231 ubiquitination proteins in macrophages were differentially expressed, and most of them are apoptosis-related proteins. Taken together, we depicted a global TB-associated splicing profile, developed TB-related AS biomarkers, demonstrated an optimal application scope of target biomarkers and preliminarily elucidated mycobacterium tuberculosis-host interaction from the perspective of splicing, offering a novel insight into the pathophysiology of TB.


Effects of SARS-CoV-2 Omicron BA.1 Spike Mutations on T-Cell Epitopes in Mice.

  • Yudong Wang‎ et al.
  • Viruses‎
  • 2023‎

T-cell immunity plays an important role in the control of SARS-CoV-2 and has a great cross-protective effect on the variants. The Omicron BA.1 variant contains more than 30 mutations in the spike and severely evades humoral immunity. To understand how Omicron BA.1 spike mutations affect cellular immunity, the T-cell epitopes of SARS-CoV-2 wild-type and Omicron BA.1 spike in BALB/c (H-2d) and C57BL/6 mice (H-2b) were mapped through IFNγ ELISpot and intracellular cytokine staining assays. The epitopes were identified and verified in splenocytes from mice vaccinated with the adenovirus type 5 vector encoding the homologous spike, and the positive peptides involved in spike mutations were tested against wide-type and Omicron BA.1 vaccines. A total of eleven T-cell epitopes of wild-type and Omicron BA.1 spike were identified in BALB/c mice, and nine were identified in C57BL/6 mice, only two of which were CD4+ T-cell epitopes and most of which were CD8+ T-cell epitopes. The A67V and Del 69-70 mutations in Omicron BA.1 spike abolished one epitope in wild-type spike, and the T478K, E484A, Q493R, G496S and H655Y mutations resulted in three new epitopes in Omicron BA.1 spike, while the Y505H mutation did not affect the epitope. These data describe the difference of T-cell epitopes in SARS-CoV-2 wild-type and Omicron BA.1 spike in H-2b and H-2d mice, providing a better understanding of the effects of Omicron BA.1 spike mutations on cellular immunity.


Carbonic anhydrase IX inhibitor S4 triggers release of DAMPs related to immunogenic cell death in glioma cells via endoplasmic reticulum stress pathway.

  • Jing Cui‎ et al.
  • Cell communication and signaling : CCS‎
  • 2023‎

Immunogenic cell death (ICD), which releases danger-associated molecular patterns (DAMP) that induce potent anticancer immune response, has emerged as a key component of therapy-induced anti-tumor immunity. The aim of this work was to analyze whether the carbonic anhydrase IX inhibitor S4 can elicit ICD in glioma cells.


Lipidomics Analysis Explores the Mechanism of Renal Injury in Rat Induced by 3-MCPD.

  • Tao Wei‎ et al.
  • Toxics‎
  • 2023‎

3-monochloropropane-1,2-diol (3-MCPD) is a food-process toxic substance, and its main target organ is the kidney. The present study examined and characterized the nephrotoxicity and the lipidomic mechanisms in a model of kidney injury in Sprague Dawley (SD) rats treated with high (45 mg/kg) and low (30 mg/kg) doses of 3-MCPD. The results showed that the ingestion of 3-MCPD led to a dose-dependent increase in serum creatinine and urea nitrogen levels and histological renal impairment. The oxidative stress indicators (MDA, GSH, T-AOC) in the rat kidney altered in a dose-dependent manner in 3-MCPD groups. The lipidomics analysis revealed that 3-MCPD caused kidney injury by interfering with glycerophospholipid metabolism and sphingolipid metabolism. In addition, 38 lipids were screened as potential biomarkers. This study not only revealed the mechanism of 3-MCPD renal toxicity from the perspective of lipidomics but also provided a new approach to the study of 3-MCPD nephrotoxicity.


Electroacupuncture promotes the repair of the damaged spinal cord in mice by mediating neurocan-perineuronal net.

  • Rong Hu‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2024‎

This study aimed to investigate the effect of perineuronal net (PNN) and neurocan (NCAN) on spinal inhibitory parvalbumin interneuron (PV-IN), and the mechanism of electroacupuncture (EA) in promoting spinal cord injury (SCI) repair through neurocan in PNN.


An Interpretable Radiomics Model Based on Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma.

  • Xian Zhong‎ et al.
  • Cancers‎
  • 2023‎

The aim of this study was to develop and validate an interpretable radiomics model based on two-dimensional shear wave elastography (2D-SWE) for symptomatic post-hepatectomy liver failure (PHLF) prediction in patients undergoing liver resection for hepatocellular carcinoma (HCC).


Pulmonary infection associated with immune dysfunction is associated with poor prognosis in patients with myelodysplastic syndrome accompanied by TP53 abnormalities.

  • Yi Chen‎ et al.
  • Frontiers in oncology‎
  • 2023‎

The aim of this study was to examine the characteristics and prognosis of patients with myelodysplastic syndrome (MDS) accompanied by TP53 abnormalities and explore potential prognostic factors and treatment responses. This retrospective analysis included 95 patients with MDS and TP53 abnormalities and 173 patients with MDS without TP53 abnormalities at the Fujian Medical University Union Hospital between January 2016 and June 2023. Among patients with TP53 abnormalities, 26 (27.4%) developed AML during the disease course, with a median transformation time of 5.7 months. Complex karyotypes were observed in 73.1% of patients, and the proportions of -5 or del(5q), -7 or del(7q), +8, and -20 or del(20q) were 81.8%, 54.5%, 30.7%, and 25.0%, respectively. These patients exhibited poor survival, with a median overall survival (OS) of 7.3 months, and had 1- and 2-year OS rates of 42.2% and 21.5%, respectively. The complete response rates for azacitidine monotherapy, venetoclax combined with azacitidine, decitabine monotherapy, and decitabine combined with low-dose chemotherapy were 9.1%, 41.7%, 37.5%, and 33.3%, respectively. Long-term survival was similar among the four treatment groups. Patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) had a median OS of 21.3 months, which trended to be longer than that of patients who did not undergo allo-HSCT (5.6 months; P = 0.1449). Patients with pulmonary infection at diagnosis experienced worse OS than those without pulmonary infection (2.3 months vs. 15.4 months; P < 0.0001). Moreover, 61.9% of patients with pulmonary infection had immune dysfunction, with a ratio of CD4+ to CD8+ T lymphocytes below two. Pulmonary infections and complex karyotypes were independent adverse prognostic factors for OS. In conclusion, TP53 abnormalities in patients with MDS were frequently accompanied by complex karyotypes, and treatments based on hypomethylating agents or venetoclax have limited efficacy. Pulmonary infections associated with immune dysfunction is associated with poor prognosis.


The GDNF-gel/HA-Mg conduit promotes the repair of peripheral nerve defects by regulating PPAR-γ/RhoA/ROCK signaling pathway.

  • Yuanqing Cai‎ et al.
  • iScience‎
  • 2024‎

Magnesium (Mg)-based conduits have gained more attention in repairing peripheral nerve defects. However, they are limited due to poor corrosion resistance and rapid degradation rate. To tackle this issue, glial cell line-derived neurotrophic factor (GDNF)- Gelatin methacryloyl (Gel)/hydroxylapatite (HA)-Mg nerve conduit was developed and implanted in sciatic nerve defect model in Sprague-Dawley (SD) rats. The sciatic functional index measurement showed that the GDNF-Gel/HA-Mg nerve conduit effectively promoted the recovery of sciatic nerve function. The pathological examination results showed that there were more regenerated nerve tissues in GDNF-Gel/HA-Mg group, with a higher number of regenerating axons, and the thickness of the myelin sheath was significantly larger than that of control group (NC group). Immunofluorescence results revealed that the GDNF-Gel/HA-Mg conduit significantly promoted the expression of genes associated with nerve repair. RNA-seq and molecular test results indicated that GDNF-Gel/HA-Mg might be involved in the repair of peripheral nerve defects by regulating PPAR-γ/RhoA/ROCK signaling pathway. Biological sciences; Neuroscience; Molecular neuroscience; Techniques in neuroscience.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: