Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 papers out of 2,071,295 papers

Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein.

  • Runtao He‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

In March 2003, a novel coronavirus was isolated from patients exhibiting atypical pneumonia and subsequently proven to be the causative agent of the disease now referred to as severe acute respiratory syndrome (SARS). The complete genome of the SARS coronavirus (SARS-CoV) has since been sequenced. The SARS-CoV nucleocapsid (SARS-CoV N) shares little homology with other members of the coronavirus family. To determine if the N protein is involved in the regulation of cellular signal transduction, an ELISA-based assay on transcription factors was used. We found that the amount of transcription factors binding to promoter sequences of c-Fos, ATF2, CREB-1, and FosB was increased by the expression of SARS-CoV N. Since these factors are related to AP-1 signal transduction pathway, we investigated whether the AP-1 pathway was activated by SARS-CoV N protein using the PathDetect system. The results demonstrated that the expression of N protein, not the membrane protein (M), activated AP-1 pathway. We also found that SARS-CoV N protein does not activate NF-kappaB pathway, demonstrating that activation of important cellular pathways by SAS-CoV N protein is selective. Thus our data for the first time indicate that SARS-CoV has encoded a strategy to regulate cellular signaling process.


S100C/A11 is a key mediator of Ca(2+)-induced growth inhibition of human epidermal keratinocytes.

  • Masakiyo Sakaguchi‎ et al.
  • The Journal of cell biology‎
  • 2003‎

An increase in extracellular Ca2+ induces growth arrest and differentiation of human keratinocytes in culture. We examined possible involvement of S100C/A11 in this growth regulation. On exposure of the cells to high Ca2+, S100C/A11 was specifically phosphorylated at 10Thr and 94Ser. Phosphorylation facilitated the binding of S100C/A11 to nucleolin, resulting in nuclear translocation of S100C/A11. In nuclei, S100C/A11 liberated Sp1/3 from nucleolin. The resulting free Sp1/3 transcriptionally activated p21CIP1/WAF1, a representative negative regulator of cell growth. Introduction of anti-S100C/A11 antibody into the cells largely abolished the growth inhibition induced by Ca2+ and the induction of p21CIP1/WAF1. In the human epidermis, S100C/A11 was detected in nuclei of differentiating cells in the suprabasal layers, but not in nuclei of proliferating cells in the basal layer. These results indicate that S100C/A11 is a key mediator of the Ca(2+)-induced growth inhibition of human keratinocytes in culture, and that it may be possibly involved in the growth regulation in vivo as well.


Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion.

  • Kristen Stead‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation. Thus, unlike the cohesin complex, which is required for cohesion establishment and maintenance, Pds5p is required only for maintenance. We identified SMT4, which encodes a SUMO isopeptidase, as a high copy suppressor of both the temperature sensitivity and precocious sister dissociation of pds5 mutants. In contrast, SMT4 does not suppress temperature sensitivity of cohesin complex mutants. Pds5p is SUMO conjugated, with sumoylation peaking during mitosis. SMT4 overexpression reduces Pds5p sumoylation, whereas smt4 mutants have increased Pds5p sumoylation. smt4 mutants were previously shown to be defective in cohesion maintenance during mitosis. These data provide the first link between a protein required for cohesion, Pds5p, and sumoylation, and suggest that Pds5p sumoylation promotes the dissolution of cohesion.


Spatio-temporal propagation of Ca2+ signals by cyclic ADP-ribose in 3T3 cells stimulated via purinergic P2Y receptors.

  • Santina Bruzzone‎ et al.
  • The Journal of cell biology‎
  • 2003‎

The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38- cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 +/- 5.2 and 50.5 +/- 8.0 pmol/mg protein). P2Y receptor stimulation of CD38- cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave.


Tumor rejection by modulation of tumor stromal fibroblasts.

  • Thomas Schüler‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Interleukin (IL)-4-secreting tumors are rejected in mice, an effect that is thought to be immune mediated. However, solid tumors are embedded in a stroma that often contains tumor-promoting fibroblasts, a cell population whose function is also affected by IL-4. Here we show that IL-4-secreting tumors grew undiminished in IL-4 receptor (R)-deficient (IL-4R-/-) mice. In IL-4R+/+ mice they were long-term suppressed in the absence of T cells but complete rejection required T cells, compatible with the assumption that hematopoietic cells needed to respond to IL-4. Surprisingly, bone marrow (BM) chimeric mice revealed that IL-4R expression exclusively on non-BM-derived cells was sufficient for tumor rejection. Fibroblasts in the tumor stroma were identified as a target cell type for IL-4 because they accumulated in IL-4-secreting tumors and displayed an activated phenotype. Additionally, coinjection of IL-4R+/+ but not IL-4R-/- fibroblasts was sufficient for the rejection of IL-4-secreting tumors in IL-4R-/- mice. Our data demonstrate a novel mechanism by which IL-4 contributes to tumor rejection and show that the targeted modulation of tumor-associated fibroblasts can be sufficient for tumor rejection.


A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease.

  • Thomas R Hawn‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Although Toll-like receptors (TLRs) are critical mediators of the immune response to pathogens, the influence of polymorphisms in this gene family on human susceptibility to infection is poorly understood. We demonstrated recently that TLR5 recognizes flagellin, a potent inflammatory stimulus present in the flagellar structure of many bacteria. Here, we show that a common stop codon polymorphism in the ligand-binding domain of TLR5 (TLR5392STOP) is unable to mediate flagellin signaling, acts in a dominant fashion, and is associated with susceptibility to pneumonia caused by Legionella pneumophila, a flagellated bacterium. We also show that flagellin is a principal stimulant of proinflammatory cytokine production in lung epithelial cells. Together, these observations suggest that TLR5392STOP increases human susceptibility to infection through an unusual dominant mechanism that compromises TLR5's essential role as a regulator of the lung epithelial innate immune response.


Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen.

  • Rance E Berg‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Interferon (IFN)-gamma plays an important role in the innate immune response against intracellular bacterial pathogens. It is commonly thought that natural killer cells are the primary source of this cytokine that is involved in activating antibacterial effects in infected cells and polarizing CD4+ T cells toward the Th1 subset. However, here we show that both effector and memory CD8+ T cells have the potential to secrete IFN-gamma in response to interleukin (IL)-12 and IL-18 in the absence of cognate antigen. We demonstrate that memory CD8+ T cells specific for the ovalbumin protein secrete IFN-gamma rapidly after infection with wild-type Listeria monocytogenes (LM). Furthermore, small numbers of ovalbumin-specific, memory CD8+ T cells can reduce spleen and liver bacterial counts in IFN-gamma-deficient mice 3 d after LM infection. Up-regulation of the receptors for IL-12 and IL-18 provides a mechanism for the ability of memory CD8+ T cells to respond in this antigen nonspecific manner. Thus, CD8+ T cells play an important role in the innate immune response against intracellular pathogens by rapidly secreting IFN-gamma in response to IL-12 and IL-18.


Results of soy-based meal replacement formula on weight, anthropometry, serum lipids & blood pressure during a 40-week clinical weight loss trial.

  • Kevin R Fontaine‎ et al.
  • Nutrition journal‎
  • 2003‎

To evaluate the intermediate-term health outcomes associated with a soy-based meal replacement, and to compare the weight loss efficacy of two distinct patterns of caloric restriction.


Genetic dissection of lymphopenia from autoimmunity by introgression of mutated Ian5 gene onto the F344 rat.

  • Daniel H Moralejo‎ et al.
  • Journal of autoimmunity‎
  • 2003‎

Peripheral T cell lymphopenia (lyp) in the BioBreeding (BB) rat is linked to a frameshift mutation in Ian5, a member of the Immune Associated Nucleotide (Ian) gene family on rat chromosome 4. This lymphopenia leads to type 1 (insulin-dependent) diabetes mellitus (T1DM) at rates up to 100% when combined with the BB rat MHC RT1 u/u genotype. In order, to better study the lymphopenia phenotype without possible confounding effects of diabetes or other autoimmune disease, we generated congenic F344.lyp rats by introgression of lyp on diabetes-resistant MHC RT1 lv1/lv1 F344 rats. Analysis of thymic CD4 and CD8 T lymphocytes revealed no difference in the percentage of CD4(-)CD8(+)and CD4(+)CD8(-)subsets in lyp/lyp compared to +/+ F344 rats. The same subsets was however dramatically reduced in blood (P=0.005), spleen (P=0.019) and mesenteric lymph nodes (MLN) (P<0.0001). Compared to F344 +/+ rats double positive CD4(+)CD8(+)T cells were increased only in lyp/lyp spleen (P=0.034) while double negative CD4(-)CD8(-)were increased in thymus (P=0.033), spleen (P=0.012), MLN (P<0.0001), and peripheral blood (P<0.0001). There were no signs of inflammatory lesions in organs and tissues in F344.lyp/lyp rats examined at 120 days of age or older. We thus conclude that the lymphopenia phenotype was reconstituted by introgression of lyp on to F344 rats without subsequent development of organ-specific autoimmunity. The congenic F344.lyp rat should prove useful to dissect the mechanisms by which the Ian5 frameshift mutation affects T cell selection, differentiation and maturation without organ-specific autoimmunity.


Understanding why adult participants at the World Senior Games choose a healthy diet.

  • Ray M Merrill‎ et al.
  • Nutrition journal‎
  • 2003‎

Identifying those seniors most likely to adopt a healthy diet, the relative importance they place on certain perceived benefits associated with a healthy diet, and whether these perceived benefits are associated with selected demographic, lifestyle, and health history variables is important for directing effective dietary health promotion programs.


Cross-platform comparison and visualisation of gene expression data using co-inertia analysis.

  • Aedín C Culhane‎ et al.
  • BMC bioinformatics‎
  • 2003‎

Rapid development of DNA microarray technology has resulted in different laboratories adopting numerous different protocols and technological platforms, which has severely impacted on the comparability of array data. Current cross-platform comparison of microarray gene expression data are usually based on cross-referencing the annotation of each gene transcript represented on the arrays, extracting a list of genes common to all arrays and comparing expression data of this gene subset. Unfortunately, filtering of genes to a subset represented across all arrays often excludes many thousands of genes, because different subsets of genes from the genome are represented on different arrays. We wish to describe the application of a powerful yet simple method for cross-platform comparison of gene expression data. Co-inertia analysis (CIA) is a multivariate method that identifies trends or co-relationships in multiple datasets which contain the same samples. CIA simultaneously finds ordinations (dimension reduction diagrams) from the datasets that are most similar. It does this by finding successive axes from the two datasets with maximum covariance. CIA can be applied to datasets where the number of variables (genes) far exceeds the number of samples (arrays) such is the case with microarray analyses.


Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus.

  • Jingqiang Wang‎ et al.
  • Clinical chemistry‎
  • 2003‎

The widespread threat of severe acute respiratory syndrome (SARS) to human life has spawned challenges to develop fast and accurate analytical methods for its early diagnosis and to create a safe antiviral vaccine for preventive use. Consequently, we thoroughly investigated the immunoreactivities with patient sera of a series of synthesized peptides from SARS-coronavirus structural proteins.


Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation.

  • Tomoko Kubori‎ et al.
  • Cell‎
  • 2003‎

Salmonella enterica invasion of host cells requires the reversible activation of the Rho-family GTPases Cdc42 and Rac1 by the bacterially encoded GEF SopE and the GAP SptP, which exert their function at different times during infection and are delivered into host cells by a type III secretion system. We found that SopE and SptP are delivered in equivalent amounts early during infection. However, SopE is rapidly degraded through a proteosome-mediated pathway, while SptP exhibits much slower degradation kinetics. The half-lives of these effector proteins are determined by their secretion and translocation domains. Chimeric protein analysis indicated that delivery of SptP into host cells by the SopE secretion and translocation domain drastically shortened its half-life. Conversely, delivery of SopE by the SptP secretion and translocation signals significantly increased its half-life, resulting in persistent actin cytoskeleton rearrangements. This regulatory mechanism constitutes a remarkable example of a pathogen's adaptation to modulate cellular functions.


Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs.

  • Robert V Intine‎ et al.
  • Molecular cell‎
  • 2003‎

The La protein facilitates the production of tRNAs in the nucleus and the translation of specific mRNAs in the cytoplasm. We report that human La that is phosphorylated on serine 366 (pLa) is nucleoplasmic and associated with precursor tRNAs and other nascent RNA polymerase III transcripts while nonphosphorylated (np)La is cytoplasmic and associated with a subset of mRNAs that contain 5'-terminal oligopyrimidine (5'TOP) motifs known to control protein synthesis. Thus, La ribonucleoproteins (RNP) exist in distinct states that differ in subcellular localization, serine 366 phosphorylation, and associated RNAs. These results are consistent with a model in which the relative concentrations of the La S366 isoforms in different subcellular compartments in conjunction with the relative concentrations of specific RNA ligands in these compartments determine the differential association of npLa and pLa with their respective classes of associated RNAs.


Interaction between serotonergic and noradrenergic axons during axonal regeneration.

  • Ying Liu‎ et al.
  • Experimental neurology‎
  • 2003‎

The present experiments focused on the morphological interaction between serotonergic (5-HT) and noradrenergic (NA) axons during regeneration following partial axonal denervation in the cerebral cortex in adult rats. The denervation paradigm used employed two neurotoxins, one for 5-HT and one for NA axons, infused together at one cortical site while a single neurotoxin to either 5-HT or NA was infused at the symmetrical cortical site in the other hemisphere. This treatment enabled us to assess the role of 5-HT or NA axons in the regeneration of the other monoaminergic axon. 5-HT axon regeneration became apparent as early as 28 days after the toxin injection, whereas the regeneration of NA axons was not evident even at 60 days after the toxin injection. Since NA axons revealed marked regeneration in the cortical site with denervation of 5-HT axons, intact 5-HT axons may be inhibitory on the regeneration of NA axons. In contrast, since the regeneration of 5-HT axons was suppressed in the absence of NA axons, NA axons appear to exert a facilitatory effect on 5-HT axon regeneration. These results suggest that the role of 5-HT axons in the regeneration of NA axons is opposite to that of NA axons in the regeneration of 5-HT axons. In addition, the regeneration of 5-HT axons occurred much faster than that of NA axons in response to axonal damage. The differential roles of 5-HT and NA axons in axonal regeneration may play a role in a variety of physiological functions related to these monoamines and possibly in the pathophysiology of clinical depression.


Lymphotoxin is required for maintaining physiological levels of serum IgE that minimizes Th1-mediated airway inflammation.

  • Hyung-Sik Kang‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Although elevated levels of IgE in asthmatic patients are strongly associated with lung infiltration by activated T helper (Th) 2 cells, the physiological role of immunoglobulin E (IgE) in the airway remains largely undefined. Lymphotoxin-deficient alpha (LTalpha-/-) mice exhibit increased airway inflammation, paradoxically accompanied by diminished levels of IgE and reduced airway hyperresponsiveness in response to both environmental and induced antigen challenge. The severe lung inflammation in LTalpha-/- mice is Th1 in nature and can be alleviated by IgE reconstitution. Conversely, depletion of IgE in wild-type mice recapitulates the lung pathologies of LTalpha-/- mice. Therefore, this work has revealed that lymphotoxin is essential for IgE production, and a physiological role of IgE in the airway may consist of maintaining the balance of Th1 and Th2 responses to prevent aberrant inflammation.


IL-4-Stat6 signaling induces tristetraprolin expression and inhibits TNF-alpha production in mast cells.

  • Kotaro Suzuki‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Increasing evidence has revealed that mast cell-derived tumor necrosis factor alpha (TNF-alpha) plays a critical role in a number of inflammatory responses by recruiting inflammatory leukocytes. In this paper, we investigated the regulatory role of interleukin 4 (IL-4) in TNF-alpha production in mast cells. IL-4 inhibited immunoglobulin E-induced TNF-alpha production and neutrophil recruitment in the peritoneal cavity in wild-type mice but not in signal transducers and activators of transcription 6 (Stat6)-deficient mice. IL-4 also inhibited TNF-alpha production in cultured mast cells by a Stat6-dependent mechanism. IL-4-Stat6 signaling induced TNF-alpha mRNA destabilization in an AU-rich element (ARE)-dependent manner, but did not affect TNF-alpha promoter activity. Furthermore, IL-4 induced the expression of tristetraprolin (TTP), an RNA-binding protein that promotes decay of ARE-containing mRNA, in mast cells by a Stat6-dependent mechanism, and the depletion of TTP expression by RNA interference prevented IL-4-induced down-regulation of TNF-alpha production in mast cells. These results suggest that IL-4-Stat6 signaling induces TTP expression and, thus, destabilizes TNF-alpha mRNA in an ARE-dependent manner.


The stromal cell-derived factor-1alpha/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas.

  • Ayse G Kayali‎ et al.
  • The Journal of cell biology‎
  • 2003‎

The SDF-1alpha/CXCR4 ligand/chemokine receptor pair is required for appropriate patterning during ontogeny and stimulates the growth and differentiation of critical cell types. Here, we demonstrate SDF-1alpha and CXCR4 expression in fetal pancreas. We have found that SDF-1alpha and its receptor CXCR4 are expressed in islets, also CXCR4 is expressed in and around the proliferating duct epithelium of the regenerating pancreas of the interferon (IFN) gamma-nonobese diabetic mouse. We show that SDF-1alpha stimulates the phosphorylation of Akt, mitogen-activated protein kinase, and Src in pancreatic duct cells. Furthermore, migration assays indicate a stimulatory effect of SDF-1alpha on ductal cell migration. Importantly, blocking the SDF-1alpha/CXCR4 axis in IFNgamma-nonobese diabetic mice resulted in diminished proliferation and increased apoptosis in the pancreatic ductal cells. Together, these data indicate that the SDF-1alpha-CXCR4 ligand receptor axis is an obligatory component in the maintenance of duct cell survival, proliferation, and migration during pancreatic regeneration.


Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1.

  • Karin List‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Profilaggrin is a large epidermal polyprotein that is proteolytically processed during keratinocyte differentiation to release multiple filaggrin monomer units as well as a calcium-binding regulatory NH2-terminal filaggrin S-100 protein. We show that epidermal deficiency of the transmembrane serine protease Matriptase/MT-SP1 perturbs lipid matrix formation, cornified envelope morphogenesis, and stratum corneum desquamation. Surprisingly, proteomic analysis of Matriptase/MT-SP1-deficient epidermis revealed the selective loss of both proteolytically processed filaggrin monomer units and the NH2-terminal filaggrin S-100 regulatory protein. This was associated with a profound accumulation of profilaggrin and aberrant profilaggrin-processing products in the stratum corneum. The data identify keratinocyte Matriptase/MT-SP1 as an essential component of the profilaggrin-processing pathway and a key regulator of terminal epidermal differentiation.


Pseudechetoxin binds to the pore turret of cyclic nucleotide-gated ion channels.

  • R Lane Brown‎ et al.
  • The Journal of general physiology‎
  • 2003‎

Peptide toxins are invaluable tools for studying the structure and physiology of ion channels. Pseudechetoxin (PsTx) is the first known peptide toxin that targets cyclic nucleotide-gated (CNG) ion channels, which play a critical role in sensory transduction in the visual and olfactory systems. PsTx inhibited channel currents at low nM concentrations when applied to the extracellular face of membrane patches expressing olfactory CNGA2 subunits. Surprisingly, 500 nM PsTx did not inhibit currents through channels formed by the CNGA3 subunit from cone photoreceptors. We have exploited this difference to identify the PsTx-binding site on the extracellular face of CNG channels. Studies using chimeric channels revealed that transplantation of the pore domain from CNGA2 was sufficient to confer high affinity PsTx binding upon a CNGA3 background. To further define the binding site, reciprocal mutations were made at 10 nonidentical amino acid residues in this region. We found that two residues in CNGA2, D316 and Y321, were essential for high-affinity inhibition by PsTx. Furthermore, replacement of both residues was required to confer high-affinity PsTx inhibition upon CNGA3. Several other residues, including E325, also form favorable interactions with PsTx. In the CNGA2-E325K mutant, PsTx affinity was reduced by approximately 5-fold to 120 nM. An electrostatic interaction with D316 does not appear to be the primary determinant of PsTx affinity, as modification of the D316C mutant with a negatively charged methanethiosulfonate reagent did not restore high affinity inhibition. The residues involved in PsTx binding are found within the pore turret and helix, in similar positions to residues that form the receptor for pore-blocking toxins in voltage-gated potassium channels. Furthermore, biophysical properties of PsTx block, including an unfavorable interaction with permeant ions, also suggest that it acts as a pore blocker. In summary, PsTx seems to occlude the entrance to the pore by forming high-affinity contacts with the pore turret, which may be larger than that found in the KcsA structure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: