Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 90 papers

KCa2 channel localization and regulation in the axon initial segment.

  • Krithika Abiraman‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2018‎

Small conductance calcium-activated potassium (KCa2) channels are expressed throughout the CNS and play a critical role in synaptic and neuronal excitability. KCa2 channels have a somatodendritic distribution with their highest expression in distal dendrites. It is unclear whether KCa2 channels are specifically present on the axon initial segment (AIS), the site at which action potentials are initiated in neurons. Through a powerful combination of toxin pharmacology, single-molecule atomic force microscopy, and dual-color fluorescence microscopy, we report here that KCa2 channels-predominantly the KCa2.3 subtype-are indeed present on the AIS. We also report that cAMP-PKA controls the axonal KCa2 channel surface expression. Surprisingly, and in contrast to KCa2 channels that were observed in the soma and dendrites, the inhibition of cAMP-PKA increased the surface expression of KCa2 channels without promoting nanoclustering. Lastly, we found that axonal KCa2 channels seem to undergo endocytosis in a dynamin-independent manner, unlike KCa2 channels in the soma and dendrites. Together, these novel results demonstrate that the distribution and membrane recycling of KCa2 channels differs among various neuronal subcompartments.-Abiraman, K., Tzingounis, A. V., Lykotrafitis, G. KCa2 channel localization and regulation in the axon initial segment.


Glucose-sensitivity of the afterhyperpolarization potential: role of SK1 channel in insulin-secreting cells.

  • Marilou A Andres‎
  • General and comparative endocrinology‎
  • 2012‎

The role of the small-conductance, calcium-activated SK potassium channel in regulating pancreatic β cell function remains controversial with conflicting pharmacological results. In this study, we used current clamp recordings to further characterize the function of SK channels in INS-1 cell line. We compared afterhyperpolarization potential (AHP) responses of SK1-downregulated cells with those of control INS-1 cells. They were tested with and without the presence of glucose. We found that cells in which SK1 channel subunit expression had been downregulated exhibited AHPs in the presence of 20mM glucose while control INS-1 cells had AHPs only in the absence of glucose. Our findings show that the glucose-dependence of the AHP in the rat INS-1 cell line depends only on SK1 channel subunit expression.


Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA.

  • Se Joon Choi‎ et al.
  • eLife‎
  • 2020‎

Changes in striatal cholinergic interneuron (ChI) activity are thought to contribute to Parkinson's disease pathophysiology and dyskinesia from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, but the physiological basis of these changes is unknown. We find that dopamine lesion decreases the spontaneous firing rate of ChIs, whereas chronic treatment with L-DOPA of lesioned mice increases baseline ChI firing rates to levels beyond normal activity. The effect of dopamine loss on ChIs was due to decreased currents of both hyperpolarization-activated cyclic nucleotide-gated (HCN) and small conductance calcium-activated potassium (SK) channels. L-DOPA reinstatement of dopamine normalized HCN activity, but SK current remained depressed. Pharmacological blockade of HCN and SK activities mimicked changes in firing, confirming that these channels are responsible for the molecular adaptation of ChIs to dopamine loss and chronic L-DOPA treatment. These findings suggest that targeting ChIs with channel-specific modulators may provide therapeutic approaches for alleviating L-DOPA-induced dyskinesia in PD patients.


KCNN2 polymorphisms and cardiac tachyarrhythmias.

  • Chih-Chieh Yu‎ et al.
  • Medicine‎
  • 2016‎

Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD.


VTA dopamine neurons are hyperexcitable in 3xTg-AD mice due to casein kinase 2-dependent SK channel dysfunction.

  • Harris E Blankenship‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Alzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation. Physiological assessment revealed hyperexcitability and disrupted firing in DA neurons caused by reduced activity of small-conductance calcium-activated potassium (SK) channels. RNA sequencing from contents of single patch-clamped DA neurons (Patch-seq) identified up-regulation of the SK channel modulator casein kinase 2 (CK2). Pharmacological inhibition of CK2 restored SK channel activity and normal firing patterns in 3xTg-AD mice. These findings shed light on a complex interplay between neuropsychiatric symptoms and subcortical circuits in AD, paving the way for novel treatment strategies.


Vasoprotective Endothelial Effects of Chronic Cannabidiol Treatment and Its Influence on the Endocannabinoid System in Rats with Primary and Secondary Hypertension.

  • Marta Baranowska-Kuczko‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

Our study aimed to examine the endothelium (vascular)-protecting effects of chronic cannabidiol (CBD) administration (10 mg/kg once daily for 2 weeks) in aortas and small mesenteric (G3) arteries isolated from deoxycorticosterone-induced hypertensive (DOCA-salt) rats and spontaneously hypertensive rats (SHR). CBD reduced hypertrophy and improved the endothelium-dependent vasodilation in response to acetylcholine in the aortas and G3 of DOCA-salt rats and SHR. The enhancement of vasorelaxation was prevented by the inhibition of nitric oxide (NO) with L-NAME and/or the inhibition of cyclooxygenase (COX) with indomethacin in the aortas and G3 of DOCA-salt and SHR, respectively. The mechanism of the CBD-mediated improvement of endothelial function in hypertensive vessels depends on the vessel diameter and may be associated with its NO-, the intermediate-conductance calcium-activated potassium channel- or NO-, COX-, the intermediate and the small-conductance calcium-activated potassium channels-dependent effect in aortas and G3, respectively. CBD increased the vascular expression of the cannabinoid CB1 and CB2 receptors and aortic levels of endocannabinoids with vasorelaxant properties e.g., anandamide, 2-arachidonoylglycerol and palmitoyl ethanolamide in aortas of DOCA-salt and/or SHR. In conclusion, CBD treatment has vasoprotective effects in hypertensive rats, in a vessel-size- and hypertension-model-independent manner, at least partly via inducing local vascular changes in the endocannabinoid system.


Correspondences between the binding characteristics of a non-natural peptide, Lei-Dab7, and the distribution of SK subunits in the rat central nervous system.

  • Sabrine Aidi-Knani‎ et al.
  • European journal of pharmacology‎
  • 2015‎

Small-conductance calcium-activated potassium channels (SK1-SK3 channels) are responsible for long-lasting hyperpolarization following action potential and contribute to the neuronal firing and integration signal. Two peptide toxins: apamin and Leiurotoxin 1, block this SK channels with high affinities. We generated a modified Leiurotoxin 1 (Lei-Dab7) that inhibits SK2 channels with a high selectivity. Competitive binding of radio-iodinated apamin to different rat brain structures, in the presence of native apamin and Lei-Dab7, has shown that dissociation constants differ by a factor of 1000 and thus demonstrated that ligand affinity is as important as ligand selectivity for a specific receptor. However, the lack of ligands discriminating between SK channel subunits is impeding the understanding of the role of each heteromeric SK channel type in different tissues. Our study aims to better understand the molecular combinations of SK channels and their association with specific functional implications. On this purpose, a clustering technique allows us to identify five groups of brain structures reflecting singular profiles of affinity and selectivity of Lei-Dab7 in comparison with apamin. The analysis of correspondences between Lei-Dab7 binding and distribution of SK subunits in these groups of brain structures suggests that functional heteromeric SK channels are involved in specific information processes.


Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

  • Wojciech Margas‎ et al.
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences‎
  • 2016‎

Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.


Altered profile of mRNA expression in atrioventricular node of streptozotocin‑induced diabetic rats.

  • Frank Christopher Howarth‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Prolonged action potential duration, reduced action potential firing rate, upstroke velocity and rate of diastolic depolarization have been demonstrated in atrioventricular node (AVN) cells from streptozotocin (STZ)‑induced diabetic rats. To further clarify the molecular basis of these electrical disturbances, the mRNA profiles encoding a variety of proteins associated with the generation and conduction of electrical activity in the AVN, were evaluated in the STZ‑induced diabetic rat heart. Expression of mRNA was measured in AVN biopsies using reverse transcription‑quantitative polymerase chain reaction techniques. Notable differences in mRNA expression included upregulation of genes encoding membrane and intracellular Ca2+ transport, including solute carrier family 8 member A1, transient receptor potential channel 1, ryanodine receptor 2/3, hyperpolarization‑activated cyclic‑nucleotide 2 and 3, calcium channel voltage‑dependent, β2 subunit and sodium channels 3a, 4a, 7a and 3b. In addition to this, potassium channels potassium voltage‑gated channel subfamily A member 4, potassium channel calcium activated intermediate/small conductance subfamily N α member 2, potassium voltage‑gated channel subfamily J members 3, 5, and 11, potassium channel subfamily K members 1, 2, 3 and natriuretic peptide B (BNP) were upregulated in AVN of STZ heart, compared with controls. Alterations in gene expression were associated with upregulation of various proteins including the inwardly rectifying, potassium channel Kir3.4, NCX1 and BNP. The present study demonstrated notable differences in the profile of mRNA encoding proteins associated with the generation, conduction and regulation of electrical signals in the AVN of the STZ‑induced diabetic rat heart. These data will provide a basis for a substantial range of future studies to investigate whether variations in mRNA translate into alterations in electrophysiological function.


Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Fmr1 Knock-Out Mice.

  • Pan-Yue Deng‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Impairment of Coronary Endothelial Function by Hypoxia-Reoxygenation Involves TRPC3 Inhibition-mediated KCa Channel Dysfunction: Implication in Ischemia-Reperfusion Injury.

  • Xiang-Chong Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Despite increasing knowledge of the significance of calcium-activated potassium (KCa) and canonical transient receptor potential (TRPC) channels in endothelial physiology, no studies so far have investigated the link between these two distinct types of channels in the control of vascular tone in pathological conditions. We previously demonstrated that hypoxia-reoxygenation (H-R) inhibits endothelial KCa and TRPC3 channels in porcine coronary arteries (PCAs). The present study further investigated whether modulation of TRPC3 is involved in H-R-induced KCa channel inhibition and associated vasodilatory dysfunction using approaches of wire myography, whole-cell voltage-clamp, and coimmunoprecipitation. Pharmacological inhibition or siRNA silencing of TRPC3 significantly suppressed bradykinin-induced intermediate- and small-conductance KCa (IKCa and SKCa) currents in endothelial cells of PCAs (PCAECs). TRPC3 protein exists in physical association with neither IKCa nor SKCa. In H-R-exposed PCAECs, the response of IKCa and SKCa to bradykinin-stimulation and to TRPC3-inhibition was markedly weakened. Activation of TRPC3 channels restored H-R-suppressed KCa currents in association with an improved endothelium-derived hyperpolarizing factor (EDHF)-type vasorelaxation. We conclude that inhibition of TRPC3 channels contributes to H-R-induced suppression of KCa channel activity, which serves as a mechanism underlying coronary endothelial dysfunction in ischemia-reperfusion (I-R) injury and renders TRPC3 a potential target for endothelial protection in I-R conditions.


Alterations of Electrophysiological Properties and Ion Channel Expression in Prefrontal Cortex of a Mouse Model of Schizophrenia.

  • Zhen Mi‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Maternal immune activation (MIA) and juvenile social isolation (SI) are two most prevalent and widely accepted environmental insults that could increase the propensity of psychiatric illnesses. Using a two-hit mouse model, we examined the impact of the combination of these two factors on animal behaviors, neuronal excitability and expressions of voltage-gated sodium (Nav) and small conductance calcium-activated potassium (SK) channels in the prefrontal cortex (PFC). We found that MIA-SI induced a number of schizophrenia-related behavioral deficits. Patch clamp recordings revealed alterations in electrophysiological properties of PFC layer-5 pyramidal cells, including hyperpolarized resting membrane potential (RMP), increased input resistance and enhanced medium after-hyperpolarization (mAHP). MIA-SI also increased the ratio of the maximal slope of somatodendritic potential to the peak slope of action potential upstroke, indicating a change in perisomatic Nav availability. Consistently, MIA-SI significantly increased the expression level of Nav1.2 and SK3 channels that contribute to the somatodendritic potential and the mAHP, respectively. Together, these changes may alter neuronal signaling in the PFC and behavioral states, representing a molecular imprint of environmental insults associated with neuropsychiatric illnesses.


The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation.

  • Vincent Robert‎ et al.
  • The Journal of general physiology‎
  • 2020‎

Recent studies have revealed that hippocampal area CA2 plays an important role in hippocampal network function. Disruption of this region has been implicated in neuropsychiatric disorders. It is well appreciated that cholinergic input to the hippocampus plays an important role in learning and memory. While the effect of elevated cholinergic tone has been well studied in areas CA1 and CA3, it remains unclear how changes in cholinergic tone impact synaptic transmission and the intrinsic properties of neurons in area CA2. In this study, we applied the cholinergic agonist carbachol and performed on-cell, whole-cell, and extracellular recordings in area CA2. We observed that under conditions of high cholinergic tone, CA2 pyramidal neurons depolarized and rhythmically fired bursts of action potentials. This depolarization depended on the activation of M1 and M3 cholinergic receptors. Furthermore, we examined how the intrinsic properties and action-potential firing were altered in CA2 pyramidal neurons treated with 10 µM carbachol. While this intrinsic burst firing persisted in the absence of synaptic transmission, bursts were shaped by synaptic inputs in the intact network. We found that both excitatory and inhibitory synaptic transmission were reduced upon carbachol treatment. Finally, we examined the contribution of different channels to the cholinergic-induced changes in neuronal properties. We found that a conductance from Kv7 channels partially contributed to carbachol-induced changes in resting membrane potential and membrane resistance. We also found that D-type potassium currents contributed to controlling several properties of the bursts, including firing rate and burst kinetics. Furthermore, we determined that T-type calcium channels and small conductance calcium-activated potassium channels play a role in regulating bursting activity.


Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

  • Dominique Martinez‎ et al.
  • PloS one‎
  • 2013‎

Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.


Increased intrinsic membrane excitability is associated with hypertrophic olivary degeneration in spinocerebellar ataxia type 1.

  • Logan M Morrison‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

One of the characteristic areas of brainstem degeneration across multiple spinocerebellar ataxias (SCAs) is the inferior olive (IO), a medullary nucleus that plays a key role in motor learning. In addition to its vulnerability in SCAs, the IO is also susceptible to a distinct pathology known as hypertrophic olivary degeneration (HOD). Clinically, HOD has been exclusively observed after lesions in the brainstem disrupt inhibitory afferents to the IO. Here, for the first time, we describe HOD in another context: spinocerebellar ataxia type 1 (SCA1). Using the genetically-precise SCA1 knock-in mouse model (SCA1-KI; both sexes used), we assessed SCA1-associated changes in IO neuron structure and function. Concurrent with degeneration, we found that SCA1-KI IO neurons are hypertrophic, exhibiting early dendrite lengthening and later somatic expansion. Unlike in previous descriptions of HOD, we observed no clear loss of IO inhibitory innervation; nevertheless, patch-clamp recordings from brainstem slices reveal that SCA1-KI IO neurons are hyperexcitable. Rather than synaptic disinhibition, we identify increases in intrinsic membrane excitability as the more likely mechanism underlying this novel SCA1 phenotype. Specifically, transcriptome analysis indicates that SCA1-KI IO hyperexcitability is associated with a reduced medullary expression of ion channels responsible for spike afterhyperpolarization (AHP) in IO neurons - a result that has a functional consequence, as SCA1-KI IO neuron spikes exhibit a diminished AHP. These results reveal membrane excitability as a potential link between disparate causes of IO degeneration, suggesting that HOD can result from any cause, intrinsic or extrinsic, that increases excitability of the IO neuron membrane.


Altered Activity of SK Channel Underpins Morphine Withdrawal Relevant Psychiatric Deficiency in Infralimbic to Accumbens Shell Pathway.

  • Liang Qu‎ et al.
  • Frontiers in psychiatry‎
  • 2019‎

Drug addiction can be viewed as a chronic psychiatric disorder that is related to dysfunction of neural circuits, including reward deficits, stress surfeits, craving changes, and compromised executive function. The nucleus accumbens (NAc) plays a crucial role in regulating craving and relapse, while the medial prefrontal cortex (mPFC) represents a higher cortex projecting into the NAc that is active in the management of executive function. In this study, we investigated the role of the small conductance calcium-activated potassium channels (SK channels) in NAc and mPFC after morphine withdrawal. Action potential (AP) firing of neurons in the NAc shell was enhanced via the downregulations of the SK channels after morphine withdrawal. Furthermore, the expression of SK2 and SK3 subunits in the NAc was significantly reduced after 3 weeks of morphine withdrawal, but was not altered in the dorsal striatum. In mPFC, the SK channel subunits were differentially expressed. To be specific, the expression of SK3 was upregulated, while the expression of SK2 was unchanged. Furthermore, the AP firing in layer 5 pyramidal neurons of the infralimbic (IL) cortex was decreased via the upregulations of the SK channel-related tail current after 3 weeks of morphine withdrawal. These results suggest that the SK channel plays a specific role in reward circuits following morphine exposure and a period of drug withdrawal, making it a potential target for the prevention of relapse.


A chlorzoxazone-folic acid combination improves cognitive affective decline in SCA2-58Q mice.

  • Ksenia S Marinina‎ et al.
  • Scientific reports‎
  • 2023‎

Spinocerebellar ataxia type 2 (SCA2) is a polyglutamine disorder caused by a pathological expansion of CAG repeats in ATXN2 gene. SCA2 is accompanied by cerebellar degeneration and progressive motor decline. Cerebellar Purkinje cells (PCs) seem to be primarily affected in this disorder. The majority of the ataxia research is focused on the motor decline observed in ataxic patients and animal models of the disease. However, recent evidence from patients and ataxic mice suggests that SCA2 can also share the symptoms of the cerebellar cognitive affective syndrome. We previously reported that SCA2-58Q PC-specific transgenic mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Here we studied the effect of the activation of the small conductance calcium-activated potassium channels (SK channels) by chlorzoxazone (CHZ) combined with the folic acid (FA) on the PC firing and also motor, cognitive and affective symptoms in SCA2-58Q mice. We realized that CHZ-FA combination improved motor and cognitive decline as well as ameliorated mood alterations in SCA2-58Q mice without affecting the firing rate of their cerebellar PCs. Our results support the idea of the combination therapy for both ataxia and non-motor symptoms in ataxic mice without affecting the firing frequency of PCs.


Activation of SK/KCa Channel Attenuates Spinal Cord Ischemia-Reperfusion Injury via Anti-oxidative Activity and Inhibition of Mitochondrial Dysfunction in Rabbits.

  • Jie Zhu‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Spinal cord ischemia-reperfusion injury (SCI/R) is a rare but devastating disorder with a poor prognosis. Small conductance calcium-activated K+ (SK/KCa) channels are a family of voltage-independent potassium channels that are shown to participate in the pathological process of several neurological disorders. The aim of this study was to investigate the role of SK/KCa channels in experimental SCI/R in rabbits. The expression of SK/KCa1 protein significantly decreased in both cytoplasm and mitochondria in spinal cord tissues after SCI/R. Treatment with 2 mg/kg NS309, a pharmacological activator for SK/KCa channel, attenuated SCI/R-induced neuronal loss, spinal cord edema and neurological dysfunction. These effects were still observed when the administration was delayed by 6 h after SCI/R initiation. NS309 decreased the levels of oxidative products and promoted activities of antioxidant enzymes in both serum and spinal cord tissues. The results of ELISA assay showed that NS309 markedly decreased levels of pro-inflammatory cytokines while increased anti-inflammatory cytokines levels after SCI/R. In addition, treatment with NS309 was shown to preserve mitochondrial respiratory complexes activities and enhance mitochondrial biogenesis. The results of western blot analysis showed that NS309 differentially regulated the expression of mitochondrial dynamic proteins. In summary, our results demonstrated that the SK/KCa channel activator NS309 protects against SCI/R via anti-oxidative activity and inhibition of mitochondrial dysfunction, indicating a therapeutic potential of NS309 for SCI/R.


Endothelium-Derived Hyperpolarizing Factor (EDHF) Mediates Acetylsalicylic Acid (Aspirin) Vasodilation of Pregnant Rat Mesenteric Arteries.

  • Helga Helgadóttir‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Acetylsalicylic acid (aspirin) exhibits a broad range of activities, including analgesic, antipyretic, and antiplatelet properties. Recent clinical studies also recommend aspirin prophylaxis in women with a high risk of pre-eclampsia, a major complication of pregnancy characterized by hypertension. We investigated the effect of aspirin on mesenteric resistance arteries and found outdiscovered the molecular mechanism underlying this action. Aspirin (10-12-10-6 M) was tested on pregnant rat mesenteric resistance arteries by a pressurized arteriography. Aspirin was investigated in the presence of several inhibitors of: (a) nitric oxide synthase (L-NAME 2 × 10-4 M); (b) cyclooxygenase (Indomethacin, 10-5 M); (c) Ca2+-activated K+ channels (Kca): small conductance (SKca, Apamin, 10-7 M), intermediate conductance (IKca, TRAM34, 10-5 M), and big conductance (BKca, paxilline, 10-5 M); and (d) endothelial-derived hyperpolarizing factor (high KCl, 80 mM). Aspirin caused a concentration-dependent vasodilation. Aspirin-vasodilation was abolished by removal of endothelium or by high KCl. Furthermore, preincubation with either apamin plus TRAM-34 or paxillin significantly attenuated aspirin vasodilation (p < 0.05). For the first time, we showed that aspirin induced endothelium-dependent vasodilation in mesenteric resistance arteries through the endothelial-derived hyperpolarizing factor (EDHF) and calcium-activated potassium channels. By activating this molecular mechanism, aspirin may lower peripheral vascular resistance and be beneficial in pregnancies complicated by hypertension.


C-bouton components on rat extensor digitorum longus motoneurons are resistant to chronic functional overload.

  • Roger W P Kissane‎ et al.
  • Journal of anatomy‎
  • 2022‎

Mammalian motor systems adapt to the demands of their environment. For example, muscle fibre types change in response to increased load or endurance demands. However, for adaptations to be effective, motoneurons must adapt such that their properties match those of the innervated muscle fibres. We used a rat model of chronic functional overload to assess adaptations to both motoneuron size and a key modulatory synapse responsible for amplification of motor output, C-boutons. Overload of extensor digitorum longus (EDL) muscles was induced by removal of their synergists, tibialis anterior muscles. Following 21 days survival, EDL muscles showed an increase in fatigue resistance and a decrease in force output, indicating a shift to a slower phenotype. These changes were reflected by a decrease in motoneuron size. However, C-bouton complexes remained largely unaffected by overload. The C-boutons themselves, quantified by expression of vesicular acetylcholine transporter, were similar in size and density in the control and overload conditions. Expression of the post-synaptic voltage-gated potassium channel (KV 2.1) was also unchanged. Small conductance calcium-activated potassium channels (SK3) were expressed in most EDL motoneurons, despite this being an almost exclusively fast motor pool. Overload induced a decrease in the proportion of SK3+ cells, however, there was no change in density or size of clusters. We propose that reductions in motoneuron size may promote early recruitment of EDL motoneurons, but that C-bouton plasticity is not necessary to increase the force output required in response to muscle overload.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: