2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 400 papers

Memory dysfunction and anxiety-like behavior in a mouse model of chronic sleep disorders.

  • Katsuhiko Sakamoto‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Sleep disturbances can contribute to cognitive decline and neuropsychiatric disorders. However, the underlying mechanisms of these processes are poorly understood. The present study evaluated the effects of a chronic sleep disorder (CSD) on long-term memory formation and anxiety-like behavior in our originally established mouse model of psychophysiological stress-induced CSD characterized by disrupted circadian rhythms of wheel-running activity and sleep-wake cycles. Model mice are continuously exposed to mild stress imposed by perpetually staying on a running-wheel to avoid water. The findings of novel object recognition (NORT) and open field (OFT) tests showed that CSD impaired recognition memory and elicited anxiety-like behavior, respectively. These results suggested that the CSD impaired cognitive function and emotional status. Thus, this CSD model could be useful for studying the underlying mechanisms of neurobehavioral difficulties caused by sleep disorders. We then examined the hippocampal mRNA expression of genes associated with learning and memory, and anxiety and depression. The CSD increased the mRNA expression of Crhr1, Ngf and Phlpp1, and suppressed that of Ace, Egr2 and Slc6a4. Based on the functions of these genes, we inferred that the increase in Crhr1 mRNA was associated with the pathogenesis of psychiatric conditions, whereas mRNA levels of the other five genes were directed towards symptom relief. Upregulating hippocampal Crhr1 expression might contribute in part to the activation of corticotropin-releasing hormone (CRH)-CRH receptor1 signaling that mediates CSD-evoked mental disorders.


Sleep disorders in people with type 2 diabetes and associated health outcomes: a review of the literature.

  • Samantha B J Schipper‎ et al.
  • Diabetologia‎
  • 2021‎

Sleep disorders are linked to development of type 2 diabetes and increase the risk of developing diabetes complications. Treating sleep disorders might therefore play an important role in the prevention of diabetes progression. However, the detection and treatment of sleep disorders are not part of standardised care for people with type 2 diabetes. To highlight the importance of sleep disorders in people with type 2 diabetes, we provide a review of the literature on the prevalence of sleep disorders in type 2 diabetes and the association between sleep disorders and health outcomes, such as glycaemic control, microvascular and macrovascular complications, depression, mortality and quality of life. Additionally, we examine the extent to which treating sleep disorders in people with type 2 diabetes improves these health outcomes. We performed a literature search in PubMed from inception until January 2021, using search terms for sleep disorders, type 2 diabetes, prevalence, treatment and health outcomes. Both observational and experimental studies were included in the review. We found that insomnia (39% [95% CI 34, 44]), obstructive sleep apnoea (55-86%) and restless legs syndrome (8-45%) were more prevalent in people with type 2 diabetes, compared with the general population. No studies reported prevalence rates for circadian rhythm sleep-wake disorders, central disorders of hypersomnolence or parasomnias. Additionally, several cross-sectional and prospective studies showed that sleep disorders negatively affect health outcomes in at least one diabetes domain, especially glycaemic control. For example, insomnia is associated with increased HbA1c levels (2.51 mmol/mol [95% CI 1.1, 4.4]; 0.23% [95% CI 0.1, 0.4]). Finally, randomised controlled trials that investigate the effect of treating sleep disorders in people with type 2 diabetes are scarce, based on a small number of participants and sometimes inconclusive. Conventional therapies such as weight loss, sleep education and cognitive behavioural therapy seem to be effective in improving sleep and health outcomes in people with type 2 diabetes. We conclude that sleep disorders are highly prevalent in people with type 2 diabetes, negatively affecting health outcomes. Since treatment of the sleep disorder could prevent diabetes progression, efforts should be made to diagnose and treat sleep disorders in type 2 diabetes in order to ultimately improve health and therefore quality of life.


Investigating the role of mGluR2 versus mGluR3 in antipsychotic-like effects, sleep-wake architecture and network oscillatory activity using novel Han Wistar rats lacking mGluR2 expression.

  • Christian M Wood‎ et al.
  • Neuropharmacology‎
  • 2018‎

Group II metabotropic glutamate receptors (mGluR2 and mGluR3) are implicated in a number of psychiatric disorders. They also control sleep-wake architecture and may offer novel therapeutic targets. However, the roles of the mGluR2 versus mGluR3 subtypes are not well understood. Here, we have taken advantage of the recently described mutant strain of Han Wistar rats, which do not express mGluR2 receptors, to investigate behavioural, sleep and EEG responses to mGluR2/3 ligands. The mGluR2/3 agonist, LY354740 (10 mg/kg), reversed amphetamine- and phencyclidine-induced locomotion and rearing behaviours in control Wistar but not in mGluR2 lacking Han Wistar rats. In control Wistar but not in Han Wistar rats the mGluR2/3 agonist LY379268 (3 & 10 mg/kg) induced REM sleep suppression with dose-dependent effects on wake and NREM sleep. By contrast, the mGluR2/3 antagonist LY3020371 (3 & 10 mg/kg) had wake-promoting effects in both rat strains, albeit smaller in the mGluR2-lacking Han Wistar rats, indicating both mGluR2 and mGluR3-mediated effects on wakefulness. LY3020371 enhanced wake cortical oscillations in the theta (4-9 Hz) and gamma (30-80 Hz) range in both Wistar and Han Wistar rat strains, whereas LY379268 reduced theta and gamma oscillations in control Wistar rats, with minimal effects in Han Wistar rats. Together these studies illustrate the significant contribution of mGluR2 to the antipsychotic-like, sleep and EEG effects of drugs acting on group II mGluRs. However, we also provide evidence of a role for mGluR3 activity in the control of sleep and wake cortical theta and gamma oscillations.


Systematic review and meta-analysis of the relationship between sleep disorders and suicidal behaviour in patients with depression.

  • Xiaofen Wang‎ et al.
  • BMC psychiatry‎
  • 2019‎

The potential link between sleep disorders and suicidal behaviour has been the subject of several reviews. We performed this meta-analysis to estimate the overall association between sleep disorders and suicidal behaviour and to identify a more specific relationship in patients with depression.


Evaluation of SAMP8 Mice as a Model for Sleep-Wake and Rhythm Disturbances Associated with Alzheimer's Disease: Impact of Treatment with the Dual Orexin (Hypocretin) Receptor Antagonist Lemborexant.

  • Carsten T Beuckmann‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2021‎

Many patients with Alzheimer's disease (AD) display circadian rhythm and sleep-wake disturbances. However, few mouse AD models exhibit these disturbances. Lemborexant, a dual orexin receptor antagonist, is under development for treating circadian rhythm disorders in dementia.


Mice lacking the circadian modulators SHARP1 and SHARP2 display altered sleep and mixed state endophenotypes of psychiatric disorders.

  • Paul C Baier‎ et al.
  • PloS one‎
  • 2014‎

Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2.


Lauflumide (NLS-4) Is a New Potent Wake-Promoting Compound.

  • Gianina Luca‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Psychostimulants are used for the treatment of excessive daytime sleepiness in a wide range of sleep disorders as well as in attention deficit hyperactivity disorder or cognitive impairment in neuropsychiatric disorders. Here, we tested in mice the wake-promoting properties of NLS-4 and its effects on the following sleep as compared with those of modafinil and vehicle. C57BL/6J mice were intraperitoneally injected with vehicle, NLS-4 (64 mg/kg), or modafinil (150 mg/kg) at light onset. EEG and EMG were recorded continuously for 24 h after injections and vigilance states as well as EEG power densities were analyzed. NLS-4 at 64 mg/kg induced significantly longer wakefulness duration than modafinil at 150 mg/kg. Although no significant sleep rebound was observed after sleep onset for both treatments as compared with their vehicles, modafinil-treated mice showed significantly more NREM sleep when compared to NLS-4. Spectral analysis of the NREM EEG after NLS-4 treatment indicated an increased power density in delta activity (0.75-3.5 Hz) and a decreased power in theta frequency range (6.25-7.25 Hz), while there was no differences after modafinil treatment. Also, time course analysis of the delta activity showed a significant increase only during the first 2 time intervals of sleep after NLS-4 treatment, while delta power was increased during the first 9 time intervals after modafinil. Our results indicate that NLS-4 is a highly potent wake-promoting drug with no sign of hypersomnia rebound. As opposed to modafinil, recovery sleep after NLS-4 treatment is characterized by less NREM amount and delta activity, suggesting a lower need for recovery despite longer drug-induced wakefulness.


Effects of exercise and diet interventions on obesity-related sleep disorders in men: study protocol for a randomized controlled trial.

  • Xiao Tan‎ et al.
  • Trials‎
  • 2013‎

Sleep is essential for normal and healthy living. Lack of good quality sleep affects physical, mental and emotional functions. Currently, the treatments of obesity-related sleep disorders focus more on suppressing sleep-related symptoms pharmaceutically and are often accompanied by side effects. Thus, there is urgent need for alternative ways to combat chronic sleep disorders. This study will investigate underlying mechanisms of the effects of exercise and diet intervention on obesity-related sleep disorders, the role of gut microbiota in relation to poor quality of sleep and day-time sleepiness, as well as the levels of hormones responsible for sleep-wake cycle regulation.


Sleep disorders and associated factors among medical students in the Middle East and North Africa: a systematic review and meta-analysis.

  • Sonia Chaabane‎ et al.
  • Scientific reports‎
  • 2024‎

Sleep disturbances like poor and insufficient sleep are common among medical students in the Middle East and North Africa (MENA) countries; however, the extent of medically defined sleep disorders (SDs) remains unclear. This meta-analysis determines SD prevalence and identifies associated factors among medical students in the MENA. PubMed, Web of Science, Google Scholar, and reference lists of included studies were searched (latest search: June 2022). Meta-analyses included 22 studies and were performed using random-effect models. Included studies used self-reported screening tools for assessing SDs and then estimated the proportion of participants at high risk of developing a SD. Central disorders of hypersomnolence were the most prevalent SD [prevalencepooled range: 30.9% (Jordan) to 62.5% (Saudi Arabia)], followed by insomnia disorders [prevalencepooled range: 30.4% (Jordan) to 59.1% (Morocco)], circadian rhythm sleep-wake disorders [prevalencepooled range: 13.5% (Jordan) to 22.4% (Saudi Arabia)], sleep-related breathing disorders [prevalencepooled range: 12.2% (Jordan) to 22.5% (Pakistan)], sleep-related movement disorders [prevalencepooled range: 5.9% (Egypt) to 30.6% (Saudi Arabia)], and parasomnias [prevalencepooled range: 5.6% (Jordan) to 17.4% (Saudi Arabia)]. Female sex, studying in the latter academic years, having anxiety, excessive internet use, and poor academic performance were significantly associated with SDs. SDs are prevalent among MENA medical students. Implementing student-centered interventions targeting high risk groups in medical schools should be considered to improve students' health and wellbeing.


Differential effects of wake promoting drug modafinil in aversive learning paradigms.

  • Bharanidharan Shanmugasundaram‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2015‎

Modafinil (MO) an inhibitor of the dopamine transporter was initially approved to treat narcolepsy, a sleep related disorder in humans. One interesting "side-effect" of this drug, which emerged from preclinical and clinical studies, is the facilitation of cognitive performance. So far, this was primarily shown in appetitive learning paradigms, but it is yet unclear whether MO exerts a more general cognitive enhancement effect. Thus, the aim of the present study in rats was to extend these findings by testing the effects of MO in two aversive paradigms, Pavlovian fear conditioning (FC) and the operant two-way active avoidance (TWA) learning paradigms. We discovered a differential, task-dependent effect of MO. In the FC paradigm MO treated rats showed a dose-dependent enhancement of fear memory compared to vehicle treated rats, indicated by increased context-related freezing. Cue related fear memory remained unaffected. In the TWA paradigm MO induced a significant decrease of avoidance responses compared to vehicle treated animals, while the number of escape reactions during the acquisition of the TWA task remained unaffected. These findings expand the knowledge in the regulation of cognitive abilities and may contribute to the understanding of the contraindicative effects of MO in anxiety related mental disorders.


Disharmony between wake- and respiration-promoting activities: effects of modafinil on ventilatory control in rodents.

  • Jiro Terada‎ et al.
  • Respiratory research‎
  • 2016‎

Modafinil is a wake-promoting drug and has been widely used for daytime sleepiness in patients with narcolepsy and other sleep disorders. A recent case series reported that daily oral modafinil alleviated hypercapnic respiratory failure in patients with COPD. However, the precise action of modafinil on respiration such as hypercapnic and/or hypoxic ventilatory responses remains unclear. The aim of this study is to clarify the effect of modafinil on the ventilatory control.


TAK-925, an orexin 2 receptor-selective agonist, shows robust wake-promoting effects in mice.

  • Hiroshi Yukitake‎ et al.
  • Pharmacology, biochemistry, and behavior‎
  • 2019‎

Orexin-producing neurons in the lateral hypothalamus are a critical regulator of sleep/wake states, and their loss is associated with narcolepsy type 1 (NT1). Orexin peptides act on two G protein-coupled receptors: orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). OX2R knockout (KO) mice, but not OX1R KO mice, showed clear narcolepsy-like phenotypes, including fragmented sleep-wake cycles. Moreover, OX2R-selective antagonists have been shown to induce sleepiness in mice, and activation of OX2R has been reported to increase wakefulness. In this study, we characterized in vitro and in vivo profiles of a novel, highly selective OX2R agonist, TAK-925 [methyl (2R,3S)-3-[(methylsulfonyl)amino]-2-{[(cis-4-phenylcyclohexyl)oxy]methyl}piperidine-1-carboxylate]. TAK-925 activated human recombinant OX2R with 50% effective concentration value of 5.5 nM, and showed >5,000-fold selectivity over OX1R in calcium mobilization assays. TAK-925 induced OX2R-downstream signals similar to those displayed by orexin peptides in Chinese hamster ovary cells stably expressing human OX2R. In an electrophysiological study, TAK-925 activated physiological OX2R on histaminergic neurons in the mouse tuberomammillary nucleus (TMN). Subcutaneous (SC) administration of TAK-925 also modulated neuronal activity in various brain regions, including TMN, as measured by an immunohistochemical analysis using an anti-c-fos antibody. TAK-925 (SC) increased wakefulness in wild-type mice, but not in OX2R KO mice, during their sleep phase, demonstrating that a highly selective OX2R agonist can increase wakefulness in mice via OX2R activation. TAK-925 may have therapeutic potential to reduce hypersomnia in multiple disorders including NT1.


Mu-opioid receptor-expressing neurons in the paraventricular thalamus modulate chronic morphine-induced wake alterations.

  • Darrell Eacret‎ et al.
  • Translational psychiatry‎
  • 2023‎

Disrupted sleep is a symptom of many psychiatric disorders, including substance use disorders. Most drugs of abuse, including opioids, disrupt sleep. However, the extent and consequence of opioid-induced sleep disturbance, especially during chronic drug exposure, is understudied. We have previously shown that sleep disturbance alters voluntary morphine intake. Here, we examine the effects of acute and chronic morphine exposure on sleep. Using an oral self-administration paradigm, we show that morphine disrupts sleep, most significantly during the dark cycle in chronic morphine, with a concomitant sustained increase in neural activity in the Paraventricular Nucleus of the Thalamus (PVT). Morphine binds primarily to Mu Opioid Receptors (MORs), which are highly expressed in the PVT. Translating Ribosome Affinity Purification (TRAP)-Sequencing of PVT neurons that express MORs showed significant enrichment of the circadian entrainment pathway. To determine whether MOR + cells in the PVT mediate morphine-induced sleep/wake properties, we inhibited these neurons during the dark cycle while mice were self-administering morphine. This inhibition decreased morphine-induced wakefulness but not general wakefulness, indicating that MORs in the PVT contribute to opioid-specific wake alterations. Overall, our results suggest an important role for PVT neurons that express MORs in mediating morphine-induced sleep disturbance.


Qualitative Phenotyping of Obstructive Sleep Apnea and Its Clinical Usefulness for the Sleep Specialist.

  • Marcello Bosi‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

The anatomical collapsibility of the upper airway, neuromuscular tone and function, sleep-wake and ventilatory control instability, and the arousal threshold all interact and contribute to certain pathophysiologic features that characterize different types of obstructive sleep apnea (OSA). A model of qualitative phenotypizationallowsus to characterize the different pathophysiological traits in OSA patients.


Neuropeptide S Counteracts Paradoxical Sleep Deprivation-Induced Anxiety-Like Behavior and Sleep Disturbances.

  • Jun-Fan Xie‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Disturbed sleep is a common subjective complaint among individuals with anxiety disorders. Sleep deprivation increases general and specific anxiety symptoms among healthy individuals. The amygdala is critical for regulating anxiety and also involved in mediating the effects of emotions on sleep. Neuropeptide S (NPS) and NPS receptors (NPSR) are reported as a novel endogenous arousal and anxiolytic system, but it is unclear yet whether this system is involved in anxiety-like behavior and sleep caused by sleep deprivation, and how it plays anxiolytic effect underlying the comorbid condition. In the present study, we demonstrate that paradoxical sleep deprivation (PSD) induced by modified multiple platform method (MMPM) for 24 h caused anxiety-like behavior, a prolonged sleep latency and subsequent paradoxical sleep (PS) rebound accompanied by an increase in electroencephalogram (EEG) theta (4.5-8.5 Hz) activities across light and dark phase in rats. The increase of PS after PSD was due to an increase of episode number during light phase and both episode number and duration during dark phase. Central action of NPS (1 nmol) attenuated PSD-induced anxiety-like behavior, and altered PSD-induced sleep-wake disturbances through increasing wakefulness, and suppressing PS and EEG theta activities. The reduction in PS time following NPS administration during light phase was because of a decreased episode number. Furthermore, sleep amount in 24 h in PSD rats given NPS was lesser than that given saline. PSD significantly enhanced NPSR mRNA expression level in the amygdala. NPS remarkably increased the number of Fos-ir neurons in the basolateral amygdala (BLA), the central amygdala (CeA) and medial amygdala (MeA). The majority of Fos-ir neurons induced by NPS also expressed NPSR. These results suggest that NPSR upregulation in the amygdala is presumably related to the PSD-induced anxiety-like behavior and sleep disturbances, and that NPS counteracts PSD-induced anxiety-like behavior and sleep disturbances possibly through activating the neurons bearing NPSR in the amygdala. In addition, the little sleep increase in PSD rats treated with NPS suggests that NPS can function as an anxiolytic without causing a subsequent sleep rebound.


Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation.

  • Guro F Giskeødegård‎ et al.
  • Scientific reports‎
  • 2015‎

Understanding how metabolite levels change over the 24 hour day is of crucial importance for clinical and epidemiological studies. Additionally, the association between sleep deprivation and metabolic disorders such as diabetes and obesity requires investigation into the links between sleep and metabolism. Here, we characterise time-of-day variation and the effects of sleep deprivation on urinary metabolite profiles. Healthy male participants (n = 15) completed an in-laboratory study comprising one 24 h sleep/wake cycle prior to 24 h of continual wakefulness under highly controlled environmental conditions. Urine samples were collected over set 2-8 h intervals and analysed by (1)H NMR spectroscopy. Significant changes were observed with respect to both time of day and sleep deprivation. Of 32 identified metabolites, 7 (22%) exhibited cosine rhythmicity over at least one 24 h period; 5 exhibiting a cosine rhythm on both days. Eight metabolites significantly increased during sleep deprivation compared with sleep (taurine, formate, citrate, 3-indoxyl sulfate, carnitine, 3-hydroxyisobutyrate, TMAO and acetate) and 8 significantly decreased (dimethylamine, 4-DTA, creatinine, ascorbate, 2-hydroxyisobutyrate, allantoin, 4-DEA, 4-hydroxyphenylacetate). These data indicate that sampling time, the presence or absence of sleep and the response to sleep deprivation are highly relevant when identifying biomarkers in urinary metabolic profiling studies.


Sleep regularity is a stronger predictor of mortality risk than sleep duration: A prospective cohort study.

  • Daniel P Windred‎ et al.
  • Sleep‎
  • 2024‎

Abnormally short and long sleep are associated with premature mortality, and achieving optimal sleep duration has been the focus of sleep health guidelines. Emerging research demonstrates that sleep regularity, the day-to-day consistency of sleep-wake timing, can be a stronger predictor for some health outcomes than sleep duration. The role of sleep regularity in mortality, however, has not been investigated in a large cohort with objective data. We therefore aimed to compare how sleep regularity and duration predicted risk for all-cause and cause-specific mortality. We calculated Sleep Regularity Index (SRI) scores from > 10 million hours of accelerometer data in 60 977 UK Biobank participants (62.8 ± 7.8 years, 55.0% female, median[IQR] SRI: 81.0[73.8-86.3]). Mortality was reported up to 7.8 years after accelerometer recording in 1859 participants (4.84 deaths per 1000 person-years, mean (±SD) follow-up of 6.30 ± 0.83 years). Higher sleep regularity was associated with a 20%-48% lower risk of all-cause mortality (p < .001 to p = 0.004), a 16%-39% lower risk of cancer mortality (p < 0.001 to p = 0.017), and a 22%-57% lower risk of cardiometabolic mortality (p < 0.001 to p = 0.048), across the top four SRI quintiles compared to the least regular quintile. Results were adjusted for age, sex, ethnicity, and sociodemographic, lifestyle, and health factors. Sleep regularity was a stronger predictor of all-cause mortality than sleep duration, by comparing equivalent mortality models, and by comparing nested SRI-mortality models with and without sleep duration (p = 0.14-0.20). These findings indicate that sleep regularity is an important predictor of mortality risk and is a stronger predictor than sleep duration. Sleep regularity may be a simple, effective target for improving general health and survival.


TNF-α and temporal changes in sleep architecture in mice exposed to sleep fragmentation.

  • Navita Kaushal‎ et al.
  • PloS one‎
  • 2012‎

TNF-α plays critical roles in host-defense, sleep-wake regulation, and the pathogenesis of various disorders. Increases in the concentration of circulating TNF-α after either sleep deprivation or sleep fragmentation (SF) appear to underlie excessive daytime sleepiness in patients with sleep apnea (OSA). Following baseline recordings, mice were subjected to 15 days of SF (daily for 12 h/day from 07.00 h to 19.00 h), and sleep parameters were recorded on days1, 7 and 15. Sleep architecture and sleep propensity were assessed in both C57BL/6J and in TNF-α double receptor KO mice (TNFR KO). To further confirm the role of TNF-α, we also assessed the effect of treatment with a TNF- α neutralizing antibody in C57BL/6J mice. SF was not associated with major changes in global sleep architecture in C57BL/6J and TNFR KO mice. TNFR KO mice showed higher baseline SWS delta power. Further, following 15 days of SF, mice injected with TNF-α neutralizing antibody and TNFR KO mice showed increased EEG SWS activity. However, SWS latency, indicative of increased propensity to sleep, was only decreased in C57BL/6J, and was unaffected in TNFR KO mice as well as in C57BL/6J mice exposed to SF but treated with TNF-α neutralizing antibody. Taken together, our findings show that the excessive sleepiness incurred by recurrent arousals during sleep may be due to activation of TNF-alpha-dependent inflammatory pathways, despite the presence of preserved sleep duration and global sleep architecture.


Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats.

  • Ricardo Borges Machado‎ et al.
  • International journal of endocrinology‎
  • 2010‎

Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH) impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH(9-41), a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM) and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis-at least at the hypothalamic level-is capable to reduce the sleep rebound induced by sleep deprivation.


Sleep staging using nocturnal sound analysis.

  • Eliran Dafna‎ et al.
  • Scientific reports‎
  • 2018‎

Sleep staging is essential for evaluating sleep and its disorders. Most sleep studies today incorporate contact sensors that may interfere with natural sleep and may bias results. Moreover, the availability of sleep studies is limited, and many people with sleep disorders remain undiagnosed. Here, we present a pioneering approach for rapid eye movement (REM), non-REM, and wake staging (macro-sleep stages, MSS) estimation based on sleep sounds analysis. Our working hypothesis is that the properties of sleep sounds, such as breathing and movement, within each MSS are different. We recorded audio signals, using non-contact microphones, of 250 patients referred to a polysomnography (PSG) study in a sleep laboratory. We trained an ensemble of one-layer, feedforward neural network classifiers fed by time-series of sleep sounds to produce real-time and offline analyses. The audio-based system was validated and produced an epoch-by-epoch (standard 30-sec segments) agreement with PSG of 87% with Cohen's kappa of 0.7. This study shows the potential of audio signal analysis as a simple, convenient, and reliable MSS estimation without contact sensors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: