Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 520 papers

Survival prediction in patients undergoing radionuclide therapy based on intratumoral somatostatin-receptor heterogeneity.

  • Rudolf A Werner‎ et al.
  • Oncotarget‎
  • 2017‎

The NETTER-1 trial demonstrated significantly improved progression-free survival (PFS) for peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors (NET) emphasizing the high demand for response prediction in appropriate candidates. In this multicenter study, we aimed to elucidate the prognostic value of tumor heterogeneity as assessed by somatostatin receptor (SSTR)-PET/CT. 141 patients with SSTR-expressing tumors were analyzed obtaining SSTR-PET/CT before PRRT (1-6 cycles, 177Lu somatostatin analog). Using the Interview Fusion Workstation (Mediso), a total of 872 metastases were manually segmented. Conventional PET parameters as well as textural features representing intratumoral heterogeneity were computed. The prognostic ability for PFS and overall survival (OS) were examined. After performing Cox regression, independent parameters were determined by ROC analysis to obtain cut-off values to be used for Kaplan-Meier analysis. Within follow-up (median, 43.1 months), 75 patients showed disease progression (median, 22.2 m) and 54 patients died (median, 27.6 m). Cox analysis identified 8 statistically independent heterogeneity parameters for time-to-progression and time-to-death. Among them, the textural feature Entropy predicted both PFS and OS. Conventional PET parameters failed in response prediction. Imaging-based heterogeneity assessment provides prognostic information in PRRT candidates and outperformed conventional PET parameters. Its implementation in clinical practice can pave the way for individualized patient management.


Changes observed in radionuclide bone scans during and after teriparatide treatment for osteoporosis.

  • Amelia E B Moore‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2012‎

Visual changes on radionuclide bone scans have been reported with teriparatide treatment. To assess this, serial studies were evaluated and quantified in ten postmenopausal women with osteoporosis treated with teriparatide (20 μg/day subcutaneous) who had (99m)Tc-methylene diphosphonate (MDP) bone scans (baseline, 3 and 18 months, then after 6 months off therapy).


Development of Small HN Linked Radionuclide Iodine-125 for Nanocarrier Image Tracing in Mouse Model.

  • Ronglin Ma‎ et al.
  • International journal of nanomedicine‎
  • 2024‎

Radionuclides have important roles in clinical tumor radiotherapy as they are used to kill tumor cells or as imaging agents for drug tracing. The application of radionuclides has been developing as an increasing number of nanomaterials are used to deliver radionuclides to tumor areas to kill tumor cells. However, promoting the efficient combination of radionuclides and nanocarriers (NCs), enhancing radionuclide loading efficiency, and avoiding environmental pollution caused by radionuclide overuse are important challenges that hinder their further development.


Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

  • Viorel Simion‎ et al.
  • PloS one‎
  • 2017‎

MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.


Preclinical evaluation of 5-methyltetrahydrofolate-based radioconjugates-new perspectives for folate receptor-targeted radionuclide therapy.

  • Patrycja Guzik‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2021‎

The folate receptor (FR) is frequently overexpressed in a variety of tumor types and, hence, an interesting target for radionuclide therapy. The aim of this study was to evaluate a new class of albumin-binding radioconjugates comprising 5-methyltetrahydrofolate (5-MTHF) as a targeting agent and to compare their properties with those of the previously established folic acid-based [177Lu]Lu-OxFol-1.


Synthesis and Evaluation of Two Long-Acting SSTR2 Antagonists for Radionuclide Therapy of Neuroendocrine Tumors.

  • Sofia Koustoulidou‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Somatostatin receptor subtype 2 (SSTR2) has become an essential target for radionuclide therapy of neuroendocrine tumors (NETs). JR11 was introduced as a promising antagonist peptide to target SSTR2. However, due to its rapid blood clearance, a better pharmacokinetic profile is necessary for more effective treatment. Therefore, two JR11 analogs (8a and 8b), each carrying an albumin binding domain, were designed to prolong the blood residence time of JR11. Both compounds were labeled with lutetium-177 and evaluated via in vitro assays, followed by in vivo SPECT/CT imaging and ex vivo biodistribution studies. [177Lu]Lu-8a and [177Lu]Lu-8b were obtained with high radiochemical purity (>97%) and demonstrated excellent stability in PBS and mouse serum (>95%). [177Lu]Lu-8a showed better affinity towards human albumin compared to [177Lu]Lu-8b. Further, 8a and 8b exhibited binding affinities 30- and 48-fold lower, respectively, than that of the parent peptide JR11, along with high cell uptake and low internalization rate. SPECT/CT imaging verified high tumor accumulation for [177Lu]Lu-8a and [177Lu]Lu-JR11 at 4, 24, 48, and 72 h post-injection, but no tumor uptake was observed for [177Lu]Lu-8b. Ex vivo biodistribution studies revealed high and increasing tumor uptake for [177Lu]Lu-8a. However, its extended blood circulation led to an unfavorable biodistribution profile for radionuclide therapy.


Detection of Lower Limb Deep Vein Thrombosis: Comparison between Radionuclide Venography and Venous Ultrasonography.

  • Daris Theerakulpisut‎ et al.
  • World journal of nuclear medicine‎
  • 2018‎

Deep vein thrombosis (DVT) is a serious medical condition that needs prompt diagnosis and treatment. The invasive gold standard contrast venography has largely been replaced by venous ultrasonography which is currently the imaging modality of choice for DVT diagnosis. Radionuclide venography (RNV) is an alternative test for DVT, but a few studies have directly compared RNV with venous ultrasonography. This study aims to determine the agreement between RNV and venous ultrasonography for diagnosis of DVT and to determine the predictive value of different RNV findings for the prediction of DVT as detected by venous ultrasonography. Imaging results from patients who underwent both RNV and venous ultrasonography for suspected DVT no more than 1 week apart were reviewed. Results from both modalities were compared to determine inter-modality agreement. A total of 121 venous segments from 102 lower limbs of 75 patients could be compared. The prevalence of DVT as detected by venous ultrasonography was 39%. RNV and venous ultrasonography had moderate agreement (73.6% agreement, κ =0.48, P < 0.0001). The absence of radiotracer activity from a deep venous segment had a positive predictive value (PPV) of 100% for DVT. Other findings such as isolated great saphenous vein activity had a lower PPV. The negative predictive value of RNV is 97.5% with only one patient out of forty with normal RNV found to have DVT by venous ultrasonography, which suggests that DVT can virtually be excluded in patients with normal RNV.


Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy.

  • Eline A M Ruigrok‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2021‎

Various radiolabeled prostate-specific membrane antigen (PSMA)-targeting tracers are clinically applied for prostate cancer (PCa) imaging and targeted radionuclide therapy. The PSMA binding affinities, biodistribution, and DNA-damaging capacities of these radiotracers have not yet been compared in detail. A major concern of PSMA-targeting radiotracers is the toxicity in other PSMA-expressing organs, such as the salivary glands, thus demanding careful evaluation of the most optimal and safest radiotracer. In this extensive preclinical study, we evaluated the clinically applied PSMA-targeting small molecule inhibitors DOTA-PSMA-617 (PSMA-617) and DOTAGA-PSMA-I&T (PSMA-I&T) and the PSMA nanobody DOTA-JVZ-007 (JVZ-007) using PSMA-expressing cell lines, a unique set of PCa patient-derived xenografts (PDX) and healthy human tissues.


Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy of breast cancer lymphatic metastases.

  • Chuan Zhang‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The theranostics of lymph node metastasis has always been one of the major obstacles to defeating breast cancer and an important decisive factor in the prognosis of patients. Herein, we design NaGdF4:Yb,Tm@NaLuF4 upconversion nanoparticles with PEG and anti-HER2 monoclonal antibody (trastuzumab, Herceptin) (NP-mAb), the delivery of NP-mAb through the lymphatic system allows for effective targeting and accumulation in lymphatic metastasis. Combination of radionuclides 68Ga and 177Lu could be chelated by the bisphosphate groups of NP-mAb. The obtained nanoprobe (NP-mAb) and nanonuclear drug (68Ga-NP-mAb or 177Lu-NP-mAb) exhibited excellent stability and show high accumulation and prolong retention in the lymph node metastasis after intratumoral injection into the foot pad by near-infrared fluorescence (NIRF), single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. Utilizing the β-rays released by 177Lu, 177Lu-NP-mAb could not only decrease the incidence of lymph node metastasis, but also significantly decrease the volumes of lymph node metastasis. Additionally, 177Lu-NP-mAb induce no obvious toxicity to treated mice through blood routine, liver and kidney function assay. Therefore, nanoprobe and nanonuclear drug we designed could be acted as excellent theranostics agents for lymph node metastasis, providing potential alternatives diagnose and treatment option for lymph node metastasis.


Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy.

  • Haojun Chen‎ et al.
  • Theranostics‎
  • 2019‎

Radiotherapy combined with immunotherapy has revealed promising outcomes in both preclinical studies and ongoing clinical trials. Targeted radionuclide therapy (TRT) is a branch of radiotherapy concerned with the use of radioisotopes, radiolabeled molecules or nanoparticles that deliver particulate radiation to cancer cells. TRT is a promising approach in cases of metastatic disease where conventional treatments are no longer effective. The increasing use of TRT raises the question of how to best integrate TRT with immunotherapy. In this study, we proposed a novel therapeutic regimen that combined programmed death ligand 1 (PD-L1)-based immunotherapy with peptide-based TRT (177Lu as the radionuclide) in the murine colon cancer model.


Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for Synergistic Combined Chemo-radioisotope Therapy of Cancer.

  • Longlong Tian‎ et al.
  • Theranostics‎
  • 2017‎

Development of biocompatible/biodegradable materials with multiple functionalities via simple methods for cancer combination therapy has attracted great attention in recent years. Herein, paclitaxel (PTX), a popular anti-tumor chemotherapeutic drug, is used to induce the self-assembly of human serum albumin (HSA) pre-labeled with radionuclide I-131, obtaining 131I-HSA-PTX nanoparticles for combined chemotherapy and radioisotope therapy (RIT) of cancer. Such 131I-HSA-PTX nanoparticles show prolonged blood circulation time, high tumor specific uptake and excellent intra-tumor penetration ability. Interestingly, as revealed by in vivo photoacoustic imaging and ex vivo immunofluorescence staining, PTX delivered into the tumor by HSA-nanoparticle transportation can remarkably enhance the tumor local oxygen level and suppress the expression of HIF-1α, leading to greatly relieved tumor hypoxia. As the results, the combined in vivo chemotherapy & RIT with 131I-HSA-PTX nanoparticles in the animal tumor model offers excellent synergistic therapeutic efficacy, likely owing to the greatly modulated tumor microenvironment associated with PTX-based chemotherapy. Therefore, in this work, a simple yet effective therapeutic agent is developed for synergistic chemo-RIT of cancer, promising for future clinic translations in cancer treatment.


Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting.

  • Kristina Westerlund‎ et al.
  • Biomaterials‎
  • 2019‎

Pretargeting is a promising strategy to reach high imaging contrast in a shorter time than by targeting with directly radiolabeled monoclonal antibodies (mAbs). One of problems in pretargeting is a site-specific, reproducible and uniform conjugation of recognition tags to mAbs. To solve this issue we propose a photoconjugation to covalently couple a recognition tag to a mAb via a photoactivatable Z domain. The Z-domain, a 58-amino acid protein derived from the IgG-binding B-domain of Staphylococcus aureus protein A, has a well-characterized binding site in the Fc portion of IgG. We tested the feasibility of this approach using pretargeting based on hybridization between peptide nucleic acids (PNAs). We have used photoconjugation to couple trastuzumab with the PNA-based hybridization probe, HP1. A complementary [57Co]Co-labeled PNA hybridization probe ([57Co]Co-HP2) was used as the secondary targeting probe. In vitro studies demonstrated that trastuzumab-ZHP1 bound specifically to human epidermal growth factor receptor 2 (HER2)-expressing cells with nanomolar affinity. The binding of the secondary [57Co]Co-HP2 probe to trastuzumab-PNA-pretreated cells was in the picomolar affinity range. A two-fold increase in SKOV-3 tumor targeting was achieved when [57Co]Co-HP2 (0.7 nmol) was injected 48 h after injection of trastuzumab-ZHP1 (0.5 nmol) compared with trastuzumab-ZHP1 alone (0.8 ± 0.2 vs. 0.33 ± 0.06 %ID/g). Tumor accumulation of [57Co]Co-HP2 was significantly reduced by pre-saturation with trastuzumab or when no trastuzumab-ZHP1 was preinjected. A tumor-to-blood uptake ratio of 1.5 ± 0.3 was achieved resulting in a clear visualization of HER2-expressing xenografts as confirmed by SPECT imaging. In conclusion, the feasibility of stable site-specific coupling of a PNA-based recognition tag to trastuzumab and successful pretargeting has been demonstrated. This approach can hopefully be used for a broad range of mAbs and recognition tags.


The Road to Personalized Myeloma Medicine: Patient-specific Single-domain Antibodies for Anti-idiotypic Radionuclide Therapy.

  • Janik Puttemans‎ et al.
  • Molecular cancer therapeutics‎
  • 2022‎

To this day, multiple myeloma remains an incurable cancer. For many patients, recurrence is unavoidably a result of lacking treatment options in the minimal residual disease stage. This is due to residual and treatment-resistant myeloma cells that can cause disease relapse. However, patient-specific membrane-expressed paraproteins could hold the key to target these residual cells responsible for disease recurrence. Here, we describe the therapeutic potential of radiolabeled, anti-idiotypic camelid single-domain antibody fragments (sdAbs) as tumor-restrictive vehicles against a membrane-bound paraprotein in the syngeneic mouse 5T33 myeloma model and analogously assess the feasibility of sdAb-based personalized medicine for patients with multiple myeloma. Llamas were immunized using extracts containing paraprotein from either murine or human sera, and selective sdAbs were retrieved using competitive phage display selections of immune libraries. An anti-5T33 idiotype sdAb was selected for targeted radionuclide therapy with the β--particle emitter 177Lu and the α-particle emitter 225Ac. sdAb-based radionuclide therapy in syngeneic mice with a low 5T33 myeloma lesion load significantly delayed tumor progression. In five of seven patients with newly diagnosed myeloma, membrane expression of the paraprotein was confirmed. Starting from serum-isolated paraprotein, for two of three selected patients anti-idiotype sdAbs were successfully generated.


177Lu-NM600 Targeted Radionuclide Therapy Extends Survival in Syngeneic Murine Models of Triple-Negative Breast Cancer.

  • Reinier Hernandez‎ et al.
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine‎
  • 2020‎

There is a clinically unmet need for effective treatments for triple-negative breast cancer (TNBC), as it remains the most aggressive subtype of breast cancer. Herein, we demonstrate a promising strategy using a tumor-targeting alkylphosphocholine (NM600) for targeted radionuclide therapy of TNBC. Methods: NM600 was radiolabeled with 86Y for PET imaging and 177Lu for targeted radionuclide therapy. 86Y-NM600 PET imaging was performed on female BALB/C mice bearing syngeneic 4T07 (nonmetastatic) and 4T1 (metastatic) TNBC tumor grafts (n = 3-5). Quantitative data derived from a PET-image region-of-interest analysis, which was corroborated by ex vivo biodistribution, were used to estimate the dosimetry of 177Lu-NM600 treatments. Weight measurement, complete blood counts, and histopathology analysis were performed to determine 177Lu-NM600 toxicity in naïve BALB/C mice administered 9.25 or 18.5 MBq. Groups of mice bearing 4T07 or 4T1 grafts (n = 5-6) received excipient or 9.25 or 18.5 MBq of 177Lu-NM600 as a single or fractionated schedule, and tumor growth and overall survival were monitored. Results: Excellent tumor targeting and rapid normal-tissue clearance of 86Y-NM600 were noted in both 4T07 and 4T1 murine models. Ex vivo biodistribution corroborated the accuracy of the PET data and validated 86Y-NM600 as a surrogate for 177Lu-NM600. 177Lu-NM600 dosimetry showed absorbed doses of 2.04 ± 0.32 and 1.68 ± 0.06 Gy/MBq to 4T07 and 4T1 tumors, respectively, which were larger than those delivered to liver (1.28 ± 0.09 Gy/MBq) and to bone marrow (0.31 ± 0.05 Gy/MBq). The 177Lu-NM600 injected activities used for treatment were well tolerated and resulted in significant tumor growth inhibition and prolonged overall survival in both tested TNBC models. A complete response was attained in 60% of treated mice bearing 4T07 grafts. Conclusion: Overall, our results suggest that 177Lu-NM600 targeted radionuclide therapy has potential for TNBC and merits further exploration in a clinical setting.


Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy.

  • Jörgen Carlsson‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2006‎

The purpose of this study was to identify combinations of dose rate and exposure time that have the potential to provide curative treatment with targeted radionuclide therapy applying low dose rate beta irradiation.


Evaluation of an antibody-PNA conjugate as a clearing agent for antibody-based PNA-mediated radionuclide pretargeting.

  • Anders Myrhammar‎ et al.
  • Scientific reports‎
  • 2020‎

Radionuclide molecular imaging of cancer-specific targets is a promising method to identify patients for targeted antibody therapy. Radiolabeled full-length antibodies however suffer from slow clearance, resulting in high background radiation. To overcome this problem, a pretargeting system based on complementary peptide nucleic acid (PNA) probes has been investigated. The pretargeting relies on sequential injections of primary, PNA-tagged antibody and secondary, radiolabeled PNA probe, which are separated in time, to allow for clearance of non-bound primary agent. We now suggest to include a clearing agent (CA), designed for removal of primary tumor-targeting agent from the blood. The CA is based on the antibody cetuximab, which was conjugated to PNA and lactosaminated by reductive amination to improve hepatic clearance. The CA was evaluated in combination with PNA-labelled trastuzumab, T-ZHP1, for radionuclide HER2 pretargeting. Biodistribution studies in normal mice demonstrated that the CA cleared ca. 7 times more rapidly from blood than unmodified cetuximab. Injection of the CA 6 h post injection of the radiolabeled primary agent [131I]I-T-ZHP1 gave a moderate reduction of the radioactivity concentration in the blood after 1 h from 8.5 ± 1.8 to 6.0 ± 0.4%ID/g. These proof-of-principle results could guide future development of a more efficient CA.


Glypican-3 targeted delivery of 89Zr and 90Y as a theranostic radionuclide platform for hepatocellular carcinoma.

  • Kevin P Labadie‎ et al.
  • Scientific reports‎
  • 2021‎

Glypican-3 (GPC3) is a tumor associated antigen expressed by hepatocellular carcinoma (HCC) cells. This preclinical study evaluated the efficacy of a theranostic platform using a GPC3-targeting antibody αGPC3 conjugated to zirconium-89 (89Zr) and yttrium-90 (90Y) to identify, treat, and assess treatment response in a murine model of HCC. A murine orthotopic xenograft model of HCC was generated. Animals were injected with 89Zr-labeled αGPC3 and imaged with a small-animal positron emission/computerized tomography (PET/CT) imaging system (immuno-PET) before and 30 days after radioimmunotherapy (RIT) with 90Y-labeled αGPC3. Serum alpha fetoprotein (AFP), a marker of tumor burden, was measured. Gross tumor volume (GTV) and SUVmax by immuno-PET was measured using fixed intensity threshold and manual segmentation methods. Immuno-PET GTV measurements reliably quantified tumor burden prior to RIT, strongly correlating with serum AFP (R2 = 0.90). Serum AFP was significantly lower 30 days after RIT in 90Y-αGPC3 treated animals compared to those untreated (p = 0.01) or treated with non-radiolabeled αGPC3 (p = 0.02). Immuno-PET GTV measurements strongly correlated with tumor burden after RIT (R2 = 0.87), and GTV of animals treated with 90Y-αGPC3 was lower than in animals who did not receive treatment or were treated with non-radiolabeled αGPC3, although this only trended toward statistical significance. A theranostic platform utilizing GPC3 targeted 89Zr and 90Y effectively imaged, treated, and assessed response after radioimmunotherapy in a GPC3-expressing HCC xenograft model.


90Y-NM600 targeted radionuclide therapy induces immunologic memory in syngeneic models of T-cell Non-Hodgkin's Lymphoma.

  • Reinier Hernandez‎ et al.
  • Communications biology‎
  • 2019‎

Finding improved therapeutic strategies against T-cell Non-Hodgkin's Lymphoma (NHL) remains an unmet clinical need. We implemented a theranostic approach employing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with 86Y for positron emission tomography (PET) imaging and 90Y for targeted radionuclide therapy (TRT) of T-cell NHL. PET imaging and biodistribution performed in mouse models of T-cell NHL showed in vivo selective tumor uptake and retention of 86Y-NM600. An initial toxicity assessment examining complete blood counts, blood chemistry, and histopathology of major organs established 90Y-NM600 safety. Mice bearing T-cell NHL tumors treated with 90Y-NM600 experienced tumor growth inhibition, extended survival, and a high degree of cure with immune memory toward tumor reestablishment. 90Y-NM600 treatment was also effective against disseminated tumors, improving survival and cure rates. Finally, we observed a key role for the adaptive immune system in potentiating a durable anti-tumor response to TRT, especially in the presence of microscopic disease.


Preclinical Targeted α- and β--Radionuclide Therapy in HER2-Positive Brain Metastasis Using Camelid Single-Domain Antibodies.

  • Janik Puttemans‎ et al.
  • Cancers‎
  • 2020‎

HER2-targeted therapies have drastically improved the outcome for breast cancer patients. However, when metastasis to the brain is involved, current strategies fail to hold up to the same promise. Camelid single-domain antibody-fragments (sdAbs) have been demonstrated to possess favorable properties for detecting and treating cancerous lesions in vivo using different radiolabeling methods. Here we evaluate the anti-HER2 sdAb 2Rs15d, coupled to diagnostic γ- and therapeutic α- and β--emitting radionuclides for the detection and treatment of HER2pos brain lesions in a preclinical setting. 2Rs15d was radiolabeled with 111In, 225Ac and 131I using DTPA- and DOTA-based bifunctional chelators and Sn-precursor of SGMIB respectively and evaluated in orthotopic tumor-bearing athymic nude mice. Therapeutic efficacy as well as systemic toxicity were determined for 131I- and 225Ac-labeled sdAbs and compared to anti-HER2 monoclonal antibody (mAb) trastuzumab in two different HER2pos tumor models. Radiolabeled 2Rs15d showed high and specific tumor uptake in both HER2pos SK-OV-3-Luc-IP1 and HER2pos MDA-MB-231Br brain lesions, whereas radiolabeled trastuzumab was unable to accumulate in intracranial SK-OV-3-Luc-IP1 tumors. Administration of [131I]-2Rs15d and [225Ac]-2Rs15d alone and in combination with trastuzumab showed a significant increase in median survival in 2 tumor models that remained largely unresponsive to trastuzumab treatment alone. Histopathological analysis revealed no significant early toxicity. Radiolabeled sdAbs prove to be promising vehicles for molecular imaging and targeted radionuclide therapy of metastatic lesions in the brain. These data demonstrate the potential of radiolabeled sdAbs as a valuable add-on treatment option for patients with difficult-to-treat HER2pos metastatic cancer.


Comparison between Radionuclide Ventriculography and Echocardiography for Quantification of Left Ventricular Systolic Function in Rats Exposed to Doxorubicin.

  • Luciano Fonseca Lemos de Oliveira‎ et al.
  • Arquivos brasileiros de cardiologia‎
  • 2017‎

Radionuclide ventriculography (RV) is a validated method to evaluate the left ventricular systolic function (LVSF) in small rodents. However, no prior study has compared the results of RV with those obtained by other imaging methods in this context.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: