Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 2,939 papers

Signal Transduction at the Domain Interface of Prokaryotic Pentameric Ligand-Gated Ion Channels.

  • Carlo Bertozzi‎ et al.
  • PLoS biology‎
  • 2016‎

Pentameric ligand-gated ion channels are activated by the binding of agonists to a site distant from the ion conduction path. These membrane proteins consist of distinct ligand-binding and pore domains that interact via an extended interface. Here, we have investigated the role of residues at this interface for channel activation to define critical interactions that couple conformational changes between the two structural units. By characterizing point mutants of the prokaryotic channels ELIC and GLIC by electrophysiology, X-ray crystallography and isothermal titration calorimetry, we have identified conserved residues that, upon mutation, apparently prevent activation but not ligand binding. The positions of nonactivating mutants cluster at a loop within the extracellular domain connecting β-strands 6 and 7 and at a loop joining the pore-forming helix M2 with M3 where they contribute to a densely packed core of the protein. An ionic interaction in the extracellular domain between the turn connecting β-strands 1 and 2 and a residue at the end of β-strand 10 stabilizes a state of the receptor with high affinity for agonists, whereas contacts of this turn to a conserved proline residue in the M2-M3 loop appear to be less important than previously anticipated. When mapping residues with strong functional phenotype on different channel structures, mutual distances are closer in conducting than in nonconducting conformations, consistent with a potential role of contacts in the stabilization of the open state. Our study has revealed a pattern of interactions that are crucial for the relay of conformational changes from the extracellular domain to the pore region of prokaryotic pentameric ligand-gated ion channels. Due to the strong conservation of the interface, these results are relevant for the entire family.


SnakeMAGs: a simple, efficient, flexible and scalable workflow to reconstruct prokaryotic genomes from metagenomes.

  • Nachida Tadrent‎ et al.
  • F1000Research‎
  • 2022‎

Background: Over the last decade, we have observed in microbial ecology a transition from gene-centric to genome-centric analyses. Indeed, the advent of metagenomics combined with binning methods, single-cell genome sequencing as well as high-throughput cultivation methods have contributed to the continuing and exponential increase of available prokaryotic genomes, which in turn has favored the exploration of microbial metabolisms. In the case of metagenomics, data processing, from raw reads to genome reconstruction, involves various steps and software which can represent a major technical obstacle. Methods: To overcome this challenge, we developed SnakeMAGs, a simple workflow that can process Illumina data, from raw reads to metagenome-assembled genomes (MAGs) classification and relative abundance estimate. It integrates state-of-the-art bioinformatic tools to sequentially perform: quality control of the reads (illumina-utils, Trimmomatic), host sequence removal (optional step, using Bowtie2), assembly (MEGAHIT), binning (MetaBAT2), quality filtering of the bins (CheckM, GUNC), classification of the MAGs (GTDB-Tk) and estimate of their relative abundance (CoverM). Developed with the popular Snakemake workflow management system, it can be deployed on various architectures, from single to multicore and from workstation to computer clusters and grids. It is also flexible since users can easily change parameters and/or add new rules. Results: Using termite gut metagenomic datasets, we showed that SnakeMAGs is slower but allowed the recovery of more MAGs encompassing more diverse phyla compared to another similar workflow named ATLAS. Importantly, these additional MAGs showed no significant difference compared to the other ones in terms of completeness, contamination, genome size nor relative abundance. Conclusions: Overall, it should make the reconstruction of MAGs more accessible to microbiologists. SnakeMAGs as well as test files and an extended tutorial are available at https://github.com/Nachida08/SnakeMAGs.


Contrasting drivers of abundant phage and prokaryotic communities revealed in diverse coastal ecosystems.

  • Alaina R Weinheimer‎ et al.
  • ISME communications‎
  • 2023‎

Phages (viruses of bacteria and archaea) are a ubiquitous top-down control on microbial communities by selectively infecting and killing cells. As obligate parasites, phages are inherently linked to processes that impact their hosts' distribution and physiology, but phages can also be impacted by external, environmental factors, such as UV radiation degrading their virions. To better understand these complex links of phages to their hosts and the environment, we leverage the unique ecological context of the Isthmus of Panama, which narrowly disconnects the productive Tropical Eastern Pacific (EP) and nutrient-poor Tropical Western Atlantic (WA) provinces. We could thus compare patterns of phage and prokaryotic communities at both global scales (between oceans) and local-scales (between habitats within an ocean). Although both phage and prokaryotic communities differed sharply between the oceans, phage community composition did not significantly differ between mangroves and reefs of the WA, while prokaryotic communities were distinct. These results suggest phages are more shaped by dispersal processes than local conditions regardless of spatial scale, while prokaryotes tend to be shaped by local conditions at smaller spatial scales. Collectively, we provide a framework for addressing the co-variability between phages and prokaryotes in marine systems and identifying factors that drive consistent versus disparate trends in community shifts, essential to informing models of biogeochemical cycles that include these interactions.


Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair.

  • Harshad Ghodke‎ et al.
  • Nature communications‎
  • 2020‎

In the model organism Escherichia coli, helix distorting lesions are recognized by the UvrAB damage surveillance complex in the global genomic nucleotide excision repair pathway (GGR). Alternately, during transcription-coupled repair (TCR), UvrA is recruited to Mfd at sites of RNA polymerases stalled by lesions. Ultimately, damage recognition is mediated by UvrA, followed by verification by UvrB. Here we characterize the differences in the kinetics of interactions of UvrA with Mfd and UvrB by following functional, fluorescently tagged UvrA molecules in live TCR-deficient or wild-type cells. The lifetimes of UvrA in Mfd-dependent or Mfd-independent interactions in the absence of exogenous DNA damage are comparable in live cells, and are governed by UvrB. Upon UV irradiation, the lifetimes of UvrA strongly depended on, and matched those of Mfd. Overall, we illustrate a non-perturbative, imaging-based approach to quantify the kinetic signatures of damage recognition enzymes participating in multiple pathways in cells.


Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study.

  • Alessandro Marabelli‎ et al.
  • The Journal of general physiology‎
  • 2015‎

Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1β glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.


Inhibition of the prokaryotic pentameric ligand-gated ion channel ELIC by divalent cations.

  • Iwan Zimmermann‎ et al.
  • PLoS biology‎
  • 2012‎

The modulation of pentameric ligand-gated ion channels (pLGICs) by divalent cations is believed to play an important role in their regulation in a physiological context. Ions such as calcium or zinc influence the activity of pLGIC neurotransmitter receptors by binding to their extracellular domain and either potentiate or inhibit channel activation. Here we have investigated by electrophysiology and X-ray crystallography the effect of divalent ions on ELIC, a close prokaryotic pLGIC homologue of known structure. We found that divalent cations inhibit the activation of ELIC by the agonist cysteamine, reducing both its potency and, at higher concentrations, its maximum response. Crystal structures of the channel in complex with barium reveal the presence of several distinct binding sites. By mutagenesis we confirmed that the site responsible for divalent inhibition is located at the outer rim of the extracellular domain, at the interface between adjacent subunits but at some distance from the agonist binding region. Here, divalent cations interact with the protein via carboxylate side-chains, and the site is similar in structure to calcium binding sites described in other proteins. There is evidence that other pLGICs may be regulated by divalent ions binding to a similar region, even though the interacting residues are not conserved within the family. Our study provides structural and functional insight into the allosteric regulation of ELIC and is of potential relevance for the entire family.


The prokaryotic activity of the IGR IRESs is mediated by ribosomal protein S1.

  • Luc Roberts‎ et al.
  • Nucleic acids research‎
  • 2022‎

Internal ribosome entry sites (IRESs) are RNA elements capable of initiating translation on an internal portion of a messenger RNA. The intergenic region (IGR) IRES of the Dicistroviridae virus family folds into a triple pseudoknot tertiary structure, allowing it to recruit the ribosome and initiate translation in a structure dependent manner. This IRES has also been reported to drive translation in Escherichia coli and to date is the only described translation initiation signal that functions across domains of life. Here we show that unlike in the eukaryotic context the tertiary structure of the IGR IRES is not required for prokaryotic ribosome recruitment. In E. coli IGR IRES translation efficiency is dependent on ribosomal protein S1 in conjunction with an AG-rich Shine-Dalgarno-like element, supporting a model where the translational activity of the IGR IRESs is due to S1-mediated canonical prokaryotic translation.


The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel.

  • Katsumasa Irie‎ et al.
  • Nature communications‎
  • 2023‎

Divalent cation block is observed in various tetrameric ion channels. For blocking, a divalent cation is thought to bind in the ion pathway of the channel, but such block has not yet been directly observed. So, the behaviour of these blocking divalent cations remains still uncertain. Here, we elucidated the mechanism of the divalent cation block by reproducing the blocking effect into NavAb, a well-studied tetrameric sodium channel. Our crystal structures of NavAb mutants show that the mutations increasing the hydrophilicity of the inner vestibule of the pore domain enable a divalent cation to stack on the ion pathway. Furthermore, non-equilibrium molecular dynamics simulation showed that the stacking calcium ion repel sodium ion at the bottom of the selectivity filter. These results suggest the primary process of the divalent cation block mechanism in tetrameric cation channels.


A unified compendium of prokaryotic and viral genomes from over 300 anaerobic digestion microbiomes.

  • Victor Borin Centurion‎ et al.
  • Environmental microbiome‎
  • 2024‎

The anaerobic digestion process degrades organic matter into simpler compounds and occurs in strictly anaerobic and microaerophilic environments. The process is carried out by a diverse community of microorganisms where each species has a unique role and it has relevant biotechnological applications since it is used for biogas production. Some aspects of the microbiome, including its interaction with phages, remains still unclear: a better comprehension of the community composition and role of each species is crucial for a cured understanding of the carbon cycle in anaerobic systems and improving biogas production.


Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community.

  • Satoshi Hiraoka‎ et al.
  • Nature communications‎
  • 2019‎

DNA methylation plays important roles in prokaryotes, and their genomic landscapes-prokaryotic epigenomes-have recently begun to be disclosed. However, our knowledge of prokaryotic methylation systems is focused on those of culturable microbes, which are rare in nature. Here, we used single-molecule real-time and circular consensus sequencing techniques to reveal the 'metaepigenomes' of a microbial community in the largest lake in Japan, Lake Biwa. We reconstructed 19 draft genomes from diverse bacterial and archaeal groups, most of which are yet to be cultured. The analysis of DNA chemical modifications in those genomes revealed 22 methylated motifs, nine of which were novel. We identified methyltransferase genes likely responsible for methylation of the novel motifs, and confirmed the catalytic specificities of four of them via transformation experiments using synthetic genes. Our study highlights metaepigenomics as a powerful approach for identification of the vast unexplored variety of prokaryotic DNA methylation systems in nature.


Diverse ATPase Proteins in Mobilomes Constitute a Large Potential Sink for Prokaryotic Host ATP.

  • Hyunjin Shim‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Prokaryote mobilome genomes rely on host machineries for survival and replication. Given that mobile genetic elements (MGEs) derive their energy from host cells, we investigated the diversity of ATP-utilizing proteins in MGE genomes to determine whether they might be associated with proteins that could suppress related host proteins that consume energy. A comprehensive search of 353 huge phage genomes revealed that up to 9% of the proteins have ATPase domains. For example, ATPase proteins constitute ∼3% of the genomes of Lak phages with ∼550 kbp genomes that occur in the microbiomes of humans and other animals. Statistical analysis shows the number of ATPase proteins increases linearly with genome length, consistent with a large sink for host ATP during replication of megaphages. Using metagenomic data from diverse environments, we found 505 mobilome proteins with ATPase domains fused to diverse functional domains. Among these composite ATPase proteins, 61.6% have known functional domains that could contribute to host energy diversion during the mobilome infection cycle. As many have domains that are known to interact with nucleic acids and proteins, we infer that numerous ATPase proteins are used during replication and for protection from host immune systems. We found a set of uncharacterized ATPase proteins with nuclease and protease activities, displaying unique domain architectures that are energy intensive based on the presence of multiple ATPase domains. In many cases, these composite ATPase proteins genomically co-localize with small proteins in genomic contexts that are reminiscent of toxin-antitoxin systems and phage helicase-antibacterial helicase systems. Small proteins that function as inhibitors may be a common strategy for control of cellular processes, thus could inspire future biochemical experiments for the development of new nucleic acid and protein manipulation tools, with diverse biotechnological applications.


An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins.

  • Emmanuel Nji‎ et al.
  • Nature communications‎
  • 2018‎

Membrane bilayers are made up of a myriad of different lipids that regulate the functional activity, stability, and oligomerization of many membrane proteins. Despite their importance, screening the structural and functional impact of lipid-protein interactions to identify specific lipid requirements remains a major challenge. Here, we use the FSEC-TS assay to show cardiolipin-dependent stabilization of the dimeric sodium/proton antiporter NhaA, demonstrating its ability to detect specific protein-lipid interactions. Based on the principle of FSEC-TS, we then engineer a simple thermal-shift assay (GFP-TS), which facilitates the high-throughput screening of lipid- and ligand- interactions with membrane proteins. By comparing the thermostability of medically relevant eukaryotic membrane proteins and a selection of bacterial counterparts, we reveal that eukaryotic proteins appear to have evolved to be more dependent to the presence of specific lipids.


Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum".

  • Zhenfeng Liu‎ et al.
  • Genome biology‎
  • 2013‎

'Chlorochromatium aggregatum' is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. 'Chlorochromatium aggregatum' is a motile, barrel-shaped aggregate formed from a single cell of 'Candidatus Symbiobacter mobilis", a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium.


Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy.

  • Yota B Kiyohara‎ et al.
  • Nucleic acids research‎
  • 2008‎

In mammals, the expression of 5-10% of genes occurs with circadian fluctuation in various organs and tissues. This cyclic transcription is thought to be directly or indirectly regulated through circadian transcriptional/translational feedback loops consisting of a set of clock genes. Among the clock genes in mammals, expression of the Dbp mRNA robustly oscillates both in vivo and in culture cells. Here, we present circadian enhancer detection strategy using prokaryotic transposon system. The mDbp promoter drives reporter gene expression in robust circadian cycles in rat-1 fibroblasts. To identify the circadian enhancer generating this robust rhythm, we developed a prokaryotic transposon-based enhancer detecting vector for in vitro transposition. Using this system, we identified a strong circadian enhancer region containing the CATGTG sequence in the 5' flanking region of the mDbp gene; this enhancer region is critical for the ability of the mDbp promoter to drive robust oscillation in living cells. This enhancer is classified as a CANNTG type non-canonical E-box. These findings strongly suggest that CANNTG-type non-canonical E-boxes may contribute, at least in part, to the regulation of robust circadian gene expression. Furthermore, these data may help explain the wider effects of the CLOCK/BMAL1 complex in control of clock output genes.


Prokaryotic Expression, Purification and Immunogenicity in Rabbits of the Small Antigen of Hepatitis Delta Virus.

  • Vera L Tunitskaya‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Hepatitis delta virus (HDV) is a viroid-like blood-borne human pathogen that accompanies hepatitis B virus infection in 5% patients. HDV has been studied for four decades; however, the knowledge on its life-cycle and pathogenesis is still sparse. The studies are hampered by the absence of the commercially-available HDV-specific antibodies. Here, we describe a set of reproducible methods for the expression in E. coli of His-tagged small antigen of HDV (S-HDAg), its purification, and production of polyclonal anti-S-HDAg antibodies in rabbits. S-HDAg was cloned into a commercial vector guiding expression of the recombinant proteins with the C-terminal His-tag. We optimized S-HDAg protein purification procedure circumventing a low affinity of the His-tagged S-HDAg to the Ni-nitrilotriacetyl agarose (Ni-NTA-agarose) resin. Optimization allowed us to obtain S-HDAg with >90% purity. S-HDAg was used to immunize Shinchilla grey rabbits which received 80 μg of S-HDAg in two subcutaneous primes in the complete, followed by four 40 μg boosts in incomplete Freunds adjuvant. Rabbits were bled two weeks post each boost. Antibody titers determined by indirect ELISA exceeded 10⁷. Anti-S-HDAg antibodies detected the antigen on Western blots in the amounts of up-to 100 pg. They were also successfully used to characterize the expression of S-HDAg in the eukaryotic cells by immunofluorescent staining/confocal microscopy.


Catalytically inactive long prokaryotic Argonaute systems employ distinct effectors to confer immunity via abortive infection.

  • Xinmi Song‎ et al.
  • Nature communications‎
  • 2023‎

Argonaute proteins (Agos) bind short nucleic acids as guides and are directed by them to recognize target complementary nucleic acids. Diverse prokaryotic Agos (pAgos) play potential functions in microbial defense. The functions and mechanisms of a group of full-length yet catalytically inactive pAgos, long-B pAgos, remain unclear. Here, we show that most long-B pAgos are functionally connected with distinct associated proteins, including nucleases, Sir2-domain-containing proteins and trans-membrane proteins, respectively. The long-B pAgo-nuclease system (BPAN) is activated by guide RNA-directed target DNA recognition and performs collateral DNA degradation in vitro. In vivo, the system mediates genomic DNA degradation after sensing invading plasmid, which kills the infected cells and results in the depletion of the invader from the cell population. Together, the BPAN system provides immunoprotection via abortive infection. Our data also suggest that the defense strategy is employed by other long-B pAgos equipped with distinct associated proteins.


A novel thermostable prokaryotic fucoidan active sulfatase PsFucS1 with an unusual quaternary hexameric structure.

  • Maria Dalgaard Mikkelsen‎ et al.
  • Scientific reports‎
  • 2021‎

Fucoidans are sulfated, fucose-rich marine polysaccharides primarily found in cell walls of brown seaweeds (macroalgae). Fucoidans are known to possess beneficial bioactivities depending on their structure and sulfation degree. Here, we report the first functional characterization and the first crystal structure of a prokaryotic sulfatase, PsFucS1, belonging to sulfatase subfamily S1_13, able to release sulfate from fucoidan oligosaccharides. PsFucS1 was identified in the genome of a Pseudoalteromonas sp. isolated from sea cucumber gut. PsFucS1 (57 kDa) is Ca2+ dependent and has an unusually high optimal temperature (68 °C) and thermostability. Further, the PsFucS1 displays a unique quaternary hexameric structure comprising a tight trimeric dimer complex. The structural data imply that this hexamer formation results from an uncommon interaction of each PsFucS1 monomer that is oriented perpendicular to the common dimer interface (~ 1500 Å2) that can be found in analogous sulfatases. The uncommon interaction involves interfacing (1246 Å2) through a bundle of α-helices in the N-terminal domain to form a trimeric ring structure. The high thermostability may be related to this unusual quaternary hexameric structure formation that is suggested to represent a novel protein thermostabilization mechanism.


Prokaryotic Argonaute Protein from Natronobacterium gregoryi Requires RNAs To Activate for DNA Interference In Vivo.

  • Jiani Xing‎ et al.
  • mBio‎
  • 2022‎

The Argonaute proteins are present in all three domains of life, which are archaea, bacteria, and eukarya. Unlike the eukaryotic Argonaute proteins, which use small RNA guides to target mRNAs, some prokaryotic Argonaute proteins (pAgos) use a small DNA guide to interfere with DNA and/or RNA targets. However, the mechanisms of pAgo natural function remain unknown. Here, we investigate the mechanism by which pAgo from Natronobacterium gregoryi (NgAgo) targets plasmid and bacteriophage T7 DNA using a heterologous Escherichia coli-based model system. We show that NgAgo expressed from a plasmid linearizes its expression vector. Cotransformation assays demonstrate that NgAgo requires an RNA in trans that is transcribed from the bacteriophage T7 promoter to activate cleavage of a cotransformed plasmid, reminiscent of the trans-RNA function in CRISPR/Cas9. We propose a mechanism to explain how NgAgo eliminates invading foreign DNA and bacteriophage. By leveraging this discovery, we show that NgAgo can be programmed to target a plasmid or a chromosome locus. IMPORTANCE We revealed the mechanism that explains how the NgAgo eliminates the invading foreign DNA and bacteriophage in bacterial cells at 37°C, and by leveraging this discovery, NgAgo can be programmed to target a plasmid or a chromosome locus.


Modeling the winter-to-summer transition of prokaryotic and viral abundance in the Arctic Ocean.

  • Christian Winter‎ et al.
  • PloS one‎
  • 2012‎

One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.


Effects of Sub-lethal Concentrations of Silver Nanoparticles on a Simulated Intestinal Prokaryotic-Eukaryotic Interface.

  • Elisa Garuglieri‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Nanotechnology applications are expected to bring a range of benefits to the food sector, aiming to provide better quality and conservation. In this research, the physiological response of both an Escherichia coli mono-species biofilm and Caco-2 intestinal cells to sub-lethal concentrations of silver nanoparticles (AgNPs) has been investigated. In order to simulate the anaerobic and aerobic compartments required for bacteria and intestinal cells growth, a simplified semi-batch model based on a transwell permeable support was developed. Interaction between the two compartments was obtained by exposing Caco-2 intestinal cells to the metabolites secreted by E. coli biofilm after its exposure to AgNPs. To the best of the authors' knowledge, this study is the first to investigate the effect of AgNPs on Caco-2 cells that takes into consideration previous AgNP-intestinal biofilm interactions, and at concentrations mimicking real human exposure. Our data show that 1 μg/mL AgNPs in anaerobic conditions (i) promote biofilm formation up to 2.3 ± 0.3 fold in the first 72 h of treatment; (ii) increase reactive oxygen species (ROS) production to 84 ± 21% and change the physiological status of microbial cells after 96 h of treatment; (iii) seriously affect a 72-h old established biofilm, increasing the level of oxidative stress to 86 ± 21%. Moreover, the results indicate that oxygen renders the biofilm more adequate to counteract AgNP effects. Comet assays on Caco-2 cells demonstrated a protective role of biofilm against the genotoxic effect of 1 μg/mL AgNPs on intestinal epithelial cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: