Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 84 papers

Clinical outcomes of presbyopia-correcting intraocular lenses in patients with Fuchs endothelial corneal dystrophy.

  • Michal Blau-Most‎ et al.
  • Scientific reports‎
  • 2023‎

Fuchs endothelial corneal dystrophy (FECD) is considered a contraindication for the implantation of presbyopia-correcting IOLs, without sufficient corroborating evidence. A Retrospective, case-control study. Nineteen eyes of ten patients with grade 2-5 FECD (study group) and 57 healthy eyes of 57 patients (control group) who underwent cataract surgery with implantation of presbyopia-correcting IOLs, at the Ein-Tal Eye Center, Tel Aviv, Israel, were included. The target refraction was emmetropia for both groups. Two subgroups of IOLs were analyzed separately: extended depth of focus (EDOF), (9 eyes of FECD patients and 27 eyes of control patients) and multifocal IOLs (10 eyes of FECD patients and 30 eyes of control patients). Main outcome measures were visual acuity and refraction 6 weeks after the surgery. Secondary outcomes were patient perceptions of visual acuity, spectacle independence, photic phenomena and satisfaction scores, reported in a self-assessment questionnaire. FECD patients in the EDOF IOL subgroup had inferior uncorrected distance visual acuity (P = 0.007) and better uncorrected near visual acuity (P = 0.001) compared to the controls. They had less spectacle independence for the intermediate range (P = 0.01) and overall (P = 0.006). However, they did not have more photic phenomena. In the multifocal IOL subgroup, no significant differences were found between the FECD and the control group in visual acuity for all ranges and in spectacle independence. FECD patients had more photic phenomena than the controls (P = 0.006), but it did not interfere with daily life activities. There was no difference in post-operative mean spherical equivalent, patient reported visual perception, and general satisfaction between FECD and control patients in both groups. Our results suggest that presbyopia-correcting IOLs can be carefully considered in patients with grade 2-5 FECD, with slightly inferior results compared with healthy eyes.


MYD88, NFKB1, and IL6 transcripts overexpression are associated with poor outcomes and short survival in neonatal sepsis.

  • Nouran B AbdAllah‎ et al.
  • Scientific reports‎
  • 2021‎

Toll-like receptor (TLR) family signature has been implicated in sepsis etiopathology. We aimed to evaluate the genetic profile of TLR pathway-related key genes; the myeloid differentiation protein 88 (MYD88), IL1 receptor-associated kinase 1 (IRAK1), the nuclear factor kappa-B1 (NFKB1), and interleukin 6 (IL6) in the blood of neonates with sepsis at the time of admission and post-treatment for the available paired-samples. This case-control study included 124 infants with sepsis admitted to the neonatal intensive care unit and 17 controls. The relative gene expressions were quantified by TaqMan Real-Time qPCR and correlated to the clinic-laboratory data. MYD88, NFKB1, and IL6 relative expressions were significantly higher in sepsis cases than controls. Higher levels of MYD88 and IL6 were found in male neonates and contributed to the sex-based separation of the cases by the principal component analysis. ROC analysis revealed MYD88 and NFKB1 transcripts to be good biomarkers for sepsis. Furthermore, patients with high circulatory MYD88 levels were associated with poor survival, as revealed by Kaplan-Meier curves analysis. MYD88, NFKB1, and IL6 transcripts showed association with different poor-outcome manifestations. Clustering analysis split the patient cohort into three distinct groups according to their transcriptomic signature and CRP levels. In conclusion, the study TLR pathway-related transcripts have a gender-specific signature, diagnostic, and prognostic clinical utility in neonatal sepsis.


Association of miR-144 levels in the peripheral blood with COVID-19 severity and mortality.

  • Alisia Madè‎ et al.
  • Scientific reports‎
  • 2022‎

Coronavirus disease-2019 (COVID-19) can be asymptomatic or lead to a wide symptom spectrum, including multi-organ damage and death. Here, we explored the potential of microRNAs in delineating patient condition and predicting clinical outcome. Plasma microRNA profiling of hospitalized COVID-19 patients showed that miR-144-3p was dynamically regulated in response to COVID-19. Thus, we further investigated the biomarker potential of miR-144-3p measured at admission in 179 COVID-19 patients and 29 healthy controls recruited in three centers. In hospitalized patients, circulating miR-144-3p levels discriminated between non-critical and critical illness (AUCmiR-144-3p = 0.71; p = 0.0006), acting also as mortality predictor (AUCmiR-144-3p = 0.67; p = 0.004). In non-hospitalized patients, plasma miR-144-3p levels discriminated mild from moderate disease (AUCmiR-144-3p = 0.67; p = 0.03). Uncontrolled release of pro-inflammatory cytokines can lead to clinical deterioration. Thus, we explored the added value of a miR-144/cytokine combined analysis in the assessment of hospitalized COVID-19 patients. A miR-144-3p/Epidermal Growth Factor (EGF) combined score discriminated between non-critical and critical hospitalized patients (AUCmiR-144-3p/EGF = 0.81; p < 0.0001); moreover, a miR-144-3p/Interleukin-10 (IL-10) score discriminated survivors from nonsurvivors (AUCmiR-144-3p/IL-10 = 0.83; p < 0.0001). In conclusion, circulating miR-144-3p, possibly in combination with IL-10 or EGF, emerges as a noninvasive tool for early risk-based stratification and mortality prediction in COVID-19.


A systematic review and meta-analysis of the effects of long-term antibiotic use on cognitive outcomes.

  • Yongqin Ye‎ et al.
  • Scientific reports‎
  • 2024‎

Antibiotics are indispensable to infection management. However, use of antibiotics can cause gut microbiota dysbiosis, which has been linked to cognitive impairment by disrupting communication between the gut microbiota and the brain. We conducted a systematic review and meta-analysis on the effects of long-term antibiotic use on cognitive outcomes. We have searched PubMed, Web of Science, Embase, Cochrane Library and Scopus for English publications before March 2023 following the PRISMA guidelines. Screening, data extraction, and quality assessment were performed in duplicate. 960 articles were screened and 16 studies which evaluated the effect of any antibiotic compared to no antibiotics or placebo were included. Case-reports, in vitro and animal studies were excluded. We found that antibiotic use was associated with worse cognitive outcomes with a pooled effect estimate of - 0.11 (95% CI - 0.15, - 0.07, Z = 5.45; P < 0.00001). Subgroup analyses performed on adult vs pediatric patients showed a similar association of antibiotic on cognition in both subgroups. Antibiotic treatment was not associated with worse cognition on subjects with existing cognitive impairment. On the other hand, antibiotic treatment on subjects with no prior cognitive impairment was associated with worse cognitive performance later in life. This calls for future well-designed and well-powered studies to investigate the impact of antibiotics on cognitive performance.


PFKP is a prospective prognostic, diagnostic, immunological and drug sensitivity predictor across pan-cancer.

  • Jian Peng‎ et al.
  • Scientific reports‎
  • 2023‎

Phosphofructokinase, platelet (PFKP) is a rate-limiting enzyme of glycolysis that plays a decisive role in various human physio-pathological processes. PFKP has been reported to have multiple functions in different cancer types, including lung cancer and breast cancer. However, no systematic pancancer analysis of PFKP has been performed; this type of analysis could elucidate the clinical value of PFKP in terms of diagnosis, prognosis, drug sensitivity, and immunological correlation. Systematic bioinformation analysis of PFKP was performed based on several public datasets, including The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Genotype-Tissue Expression Project (GTEx), and Human Protein Atlas (HPA). Prospective carcinogenesis of PFKP across cancers was estimated by expression analysis, effect on patient prognosis, diagnosis significance evaluation, and immunity regulation estimation. Then, pancancer functional enrichment of PFKP was also assessed through its effect on the signaling score and gene expression profile. Finally, upstream expression regulation of PFKP was explored by promoter DNA methylation and transcription factor (TF) prediction. Our analysis revealed that high expression of PFKP was found in most cancer types. Additionally, a high level of PFKP displayed a significant correlation with poor prognosis in patients across cancers. The diagnostic value of PFKP was performed based on its positive correlation with programmed cell death-ligand 1 (PD-L1). We also found an obvious immune-regulating effect of PFKP in most cancer types. PFKP also had a strong negative correlation with several cancer drugs. Finally, ectopic expression of PFKP may depend on DNA methylation and several predicated transcription factors, including the KLF (KLF transcription factor) and Sp (Sp transcription factor) families. This pancancer analysis revealed that a high expression level of PFKP might be a useful biomarker and predictor in most cancer types. Additionally, the performance of PFKP across cancers also suggested its meaningful role in cancer immunity regulation, even in immunotherapy and drug resistance. Overall, PFKP might be explored as an auxiliary monitor for pancancer early prognosis and diagnosis.


A prospective dual-centre intra-individual controlled study for the treatment of burns comparing dermis graft with split-thickness skin auto-graft.

  • Sinan Dogan‎ et al.
  • Scientific reports‎
  • 2022‎

To investigate if donor and recipient site morbidity (healing time and cosmesis) could be reduced by a novel, modified split-thickness skin grafting (STSG) technique using a dermal component in the STSG procedure (DG). The STSG technique has been used for 150 years in surgery with limited improvements. Its drawbacks are well known and relate to donor site morbidity and recipient site cosmetic shortcomings (especially mesh patterns, wound contracture, and scarring). The Dermal graft technique (DG) has emerged as an interesting alternative, which reduces donor site morbidity, increases graft yield, and has the potential to avoid the mesh procedure in the STSG procedure due to its elastic properties. A prospective, dual-centre, intra-individual controlled comparison study. Twenty-one patients received both an unmeshed dermis graft and a regular 1:1.5 meshed STSG. Aesthetic and scar assessments were done using The Patient and Observer Scar Assessment Scale (POSAS) and a Cutometer Dual MPA 580 on both donor and recipient sites. These were also examined histologically for remodelling and scar formation. Dermal graft donor sites and the STSG donor sites healed in 8 and 14 days, respectively (p < 0.005). Patient-reported POSAS showed better values for colour for all three measurements, i.e., 3, 6, and 12 months, and the observers rated both vascularity and pigmentation better on these occasions (p < 0.01). At the recipient site, (n = 21) the mesh patterns were avoided as the DG covered the donor site due to its elastic properties and rendered the meshing procedure unnecessary. Scar formation was seen at the dermal donor and recipient sites after 6 months as in the standard scar healing process. The dermis graft technique, besides potentially rendering a larger graft yield, reduced donor site morbidity, as it healed faster than the standard STSG. Due to its elastic properties, the DG procedure eliminated the meshing requirement (when compared to a 1:1.5 meshed STSG). This promising outcome presented for the DG technique needs to be further explored, especially regarding the elasticity of the dermal graft and its ability to reduce mesh patterns.Trial registration: ClinicalTrials.gov Identifier (NCT05189743) 12/01/2022.


Identification of molecular classification and gene signature for predicting prognosis and immunotherapy response in HNSCC using cell differentiation trajectories.

  • Ji Yin‎ et al.
  • Scientific reports‎
  • 2022‎

Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous malignancy with poor prognosis. This article aims to explore the clinical significance of cell differentiation trajectory in HNSCC, identify different molecular subtypes by consensus clustering analysis, and develop a prognostic risk model on the basis of differentiation-related genes (DRGs) for predicting the prognosis of HNSCC patients. Firstly, cell trajectory analysis was performed on single-cell RNA sequencing (scRNA-seq) data, four molecular subtypes were identified from bulk RNA-seq data, and the molecular subtypes were predictive of patient survival, clinical features, immune infiltration status, and expression of immune checkpoint genes (ICGs)s. Secondly, we developed a 10-DRG signature for predicting the prognosis of HNSCC patients by using weighted correlation network analysis (WGCNA), differential expression analysis, univariate Cox regression analysis, and multivariate Cox regression analysis. Then, a nomogram integrating the risk assessment model and clinical features can successfully predict prognosis with favorable predictive performance and superior accuracy. We projected the response to immunotherapy and the sensitivity of commonly used antitumor drugs between the different groups. Finally, we used the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis and western blot to verify the signature. In conclusion, we identified distinct molecular subtypes by cell differentiation trajectory and constructed a novel signature based on differentially expressed prognostic DRGs, which could predict the prognosis and response to immunotherapy for patients and may provide valuable clinical applications in the treatment of HNSCC.


Microdeletions and microduplications linked to severe congenital disorders in infertile men.

  • Triin Kikas‎ et al.
  • Scientific reports‎
  • 2023‎

Data on the clinical validity of DNA copy number variants (CNVs) in spermatogenic failure (SPGF) is limited. This study analyzed the genome-wide CNV profile in 215 men with idiopathic SPGF and 62 normozoospermic fertile men, recruited at the Andrology Clinic, Tartu University Hospital, Estonia. A two-fold higher representation of > 1 Mb CNVs was observed in men with SPGF (13%, n = 28) compared to controls (6.5%, n = 4). Seven patients with SPGF were identified as carriers of microdeletions (1q21.1; 2.4 Mb) or microduplications (3p26.3, 1.1 Mb; 7p22.3-p22.2, 1.56 Mb; 10q11.22, 1.42 Mb, three cases; Xp22.33; 2.3 Mb) linked to severe congenital conditions. Large autosomal CNV carriers had oligozoospermia, reduced or low-normal bitesticular volume (22-28 ml). The 7p22.3-p22.2 microduplication carrier presented mild intellectual disability, neuropsychiatric problems, and short stature. The Xp22.33 duplication at the PAR1/non-PAR boundary, previously linked to uterine agenesis, was detected in a patient with non-obstructive azoospermia. A novel recurrent intragenic deletion in testis-specific LRRC69 was significantly overrepresented in patients with SPGF compared to the general population (3.3% vs. 0.85%; χ2 test, OR = 3.9 [95% CI 1.8-8.4], P = 0.0001). Assessment of clinically valid CNVs in patients with SPGF will improve their management and counselling for general and reproductive health, including risk of miscarriage and congenital disorders in future offspring.


In silico discovery of a FOXM1 driven embryonal signaling pathway in therapy resistant neuroblastoma tumors.

  • Suzanne Vanhauwaert‎ et al.
  • Scientific reports‎
  • 2018‎

Chemotherapy resistance is responsible for high mortality rates in neuroblastoma. MYCN, an oncogenic driver in neuroblastoma, controls pluripotency genes including LIN28B. We hypothesized that enhanced embryonic stem cell (ESC) gene regulatory programs could mark tumors with high pluripotency capacity and subsequently increased risk for therapy failure. An ESC miRNA signature was established based on publicly available data. In addition, an ESC mRNA signature was generated including the 500 protein coding genes with the highest positive expression correlation with the ESC miRNA signature score in 200 neuroblastomas. High ESC m(i)RNA expression signature scores were significantly correlated with poor neuroblastoma patient outcome specifically in the subgroup of MYCN amplified tumors and stage 4 nonamplified tumors. Further data-mining identified FOXM1, as the major predicted driver of this ESC signature, controlling a large set of genes implicated in cell cycle control and DNA damage response. Of further interest, re-analysis of published data showed that MYCN transcriptionally activates FOXM1 in neuroblastoma cells. In conclusion, a novel ESC m(i)RNA signature stratifies neuroblastomas with poor prognosis, enabling the identification of therapy-resistant tumors. The finding that this signature is strongly FOXM1 driven, warrants for drug design targeted at FOXM1 or key components controlling this pathway.


PRSS3/Mesotrypsin and kallikrein-related peptidase 5 are associated with poor prognosis and contribute to tumor cell invasion and growth in lung adenocarcinoma.

  • Honghai Ma‎ et al.
  • Scientific reports‎
  • 2019‎

Serine proteases have been implicated as key drivers and facilitators of lung cancer malignancy, and while these proteins represent straightforward targets for therapeutic inhibitors, identification of optimal points for intervention has been complicated by the complex networks in which these enzymes function. Here we implicate a signaling pathway consisting of PRSS3/mesotrypsin and kallikrein-related peptidase 5 (KLK5) in lung adenocarcinoma malignancy. We show that elevated PRSS3/mesotrypsin expression is prognostic for poor outcome for patients with lung adenocarcinoma, and that genetic or pharmacologic targeting of PRSS3/mesotrypsin reduces lung adenocarcinoma cell invasiveness and proliferation. We further show that genetic targeting of KLK5, a known target of PRSS3/mesotrypsin, phenocopies the effect of PRSS3/mesotrypsin knockdown, and also that elevated expression of KLK5 is similarly prognostic for outcome in lung adenocarcinoma. Finally, we use transcriptional profiling experiments to show that PRSS3/mesotrypsin and KLK5 control a common malignancy-promoting pathway. These experiments implicate a potential PRSS3/mesotrypsin-KLK5 signaling module in lung adenocarcinoma and reveal the potential therapeutic benefit of selectively targeting these pathways.


Distinct pressure half-time values by transthoracic echocardiography for grading of paravalvular regurgitation after transcatheter aortic valve replacement.

  • Joerg Schröder‎ et al.
  • Scientific reports‎
  • 2020‎

Postprocedural aortic regurgitation (AR) has negative impact on patient outcome after transcatheter aortic valve replacement (TAVR). Standard assessment of AR severity by echocardiography is hampered after TAVR. Measurement of pressure half-time (PHT) by echocardiography is not limited in these patients but it may be affected by concomitant left ventricular hypertrophy (LVH). This study sought to evaluate distinct cut-off values of PHT differentiating between patients without and with more than mild LVH for grading of AR after TAVR with cardiac magnetic resonance (CMR) as the reference method for comparison. 71 patients (age 81 ± 6 years) with severe aortic stenosis undergoing TAVR were included into the study. Transthoracic echocardiography (TTE) and CMR were performed after TAVR. Left ventricular mass index was calculated by TTE. PHT was measured by continuous-wave Doppler echocardiography of aortic regurgitation jet. In 18 patients (25%) PHT could not be obtained due to no or very faint Doppler signal. Aortic regurgitant volume and regurgitant fraction were calculated by CMR by flow analysis of the ascending aorta. In 14 of 53 patients (26%) AR after TAVR was moderate or severe as categorized by CMR analysis. More than mild LVH was present in 27 of 53 patients (51%). PHT correlated inversely less to regurgitant fraction by CMR analysis in patients with LVH (r = -0.293; p = 0.138) than in patients without LVH (r = -0.455; p = 0.020). In patients without relevant LVH accuracy of PHT to predict moderate or severe paravalvular regurgitation AUC was 0.813 using a cut-off value of 347 ms and AUC was 0.729 in patients with more than mild LVH using a cut-off value of 420 ms. Analysis of PHT by TTE with distinct cut-off values for patients without and with more than mild LVH allows detection of moderate or severe AR after TAVR as defined by CMR. In none of the patients in which PHT could not be measured AR was categorized as more than trace by CMR analysis.


Profiling of gallbladder carcinoma reveals distinct miRNA profiles and activation of STAT1 by the tumor suppressive miRNA-145-5p.

  • Benjamin Goeppert‎ et al.
  • Scientific reports‎
  • 2019‎

Gallbladder carcinoma (GBC) is a biliary tract cancer with few treatment options and poor prognosis. Radical surgery is the only potentially curative treatment option but most patients diagnosed with GBC are unresectable. Thus, there is a great need for the development of new treatment options including targeted therapy. Here, we aimed at identifying deregulated miRNAs and affected pathways involved in GBC development and progression. We performed global miRNA profiling of 40 GBC and 8 normal gallbladder tissues and identified large differences with 30% of miRNAs being differentially expressed (false discovery rate: FDR < 0.001). We found 24 miRNAs to be differentially regulated in GBC with poor outcome (p < 0.05) of which miR-145-5p was the most downregulated miRNA. Overexpression of miR-145-5p significantly reduced cell proliferation and colony formation. Gene expression analysis of cells expressing miR-145-5p mimics revealed activation of the Signal transducer and activator of transcription 1 (STAT1) signaling pathway which is mainly tumor suppressive. Furthermore, the activation of STAT1 by miR-145-5p was specifically observed in gallbladder carcinoma and cholangiocarcinoma but not in hepatocellular carcinoma cells. The Protein Tyrosine Phosphatase Receptor Type F (PTPRF) is downregulated upon miR-145 expression and may be involved in STAT1 regulation. In addition, we found that the STAT1-regulated protein IRF7 is downregulated in GBC compared to normal gallbladder tissue and low IRF7 expression is associated with significantly lower overall survival of GBC patients. Thus, this study identified GBC patient subgroups and provides new mechanistic insights in the tumor suppressive function of miR-145-5p leading to activation of STAT1 signaling.


Splicing imbalances in basal-like breast cancer underpin perturbation of cell surface and oncogenic pathways and are associated with patients' survival.

  • Filipe Gracio‎ et al.
  • Scientific reports‎
  • 2017‎

Despite advancements in the use of transcriptional information to understand and classify breast cancers, the contribution of splicing to the establishment and progression of these tumours has only recently starting to emerge. Our work explores this lesser known landscape, with special focus on the basal-like breast cancer subtype where limited therapeutic opportunities and no prognostic biomarkers are currently available. Using ExonArray analysis of 176 breast cancers and 9 normal breast tissues we demonstrate that splicing levels significantly contribute to the diversity of breast cancer molecular subtypes and explain much of the differences compared with normal tissues. We identified pathways specifically affected by splicing imbalances whose perturbation would be hidden from a conventional gene-centric analysis of gene expression. We found that a large fraction of them involve cell-to-cell communication, extracellular matrix and transport, as well as oncogenic and immune-related pathways transduced by plasma membrane receptors. We identified 247 genes in which splicing imbalances are associated with clinical patients' outcome, whilst no association was detectable at the gene expression level. These include the signaling gene TGFBR1, the proto-oncogene MYB as well as many immune-related genes such as CCR7 and FCRL3, reinforcing evidence for a role of immune components in influencing breast cancer patients' prognosis.


Whole-exome sequencing of 228 patients with sporadic Parkinson's disease.

  • Cynthia Sandor‎ et al.
  • Scientific reports‎
  • 2017‎

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1% of the population over 65 years characterized clinically by both motor and non-motor symptoms accompanied by the preferential loss of dopamine neurons in the substantia nigra pars compacta. Here, we sequenced the exomes of 244 Parkinson's patients selected from the Oxford Parkinson's Disease Centre Discovery Cohort and, after quality control, 228 exomes were available for analyses. The PD patient exomes were compared to 884 control exomes selected from the UK10K datasets. No single non-synonymous (NS) single nucleotide variant (SNV) nor any gene carrying a higher burden of NS SNVs was significantly associated with PD status after multiple-testing correction. However, significant enrichments of genes whose proteins have roles in the extracellular matrix were amongst the top 300 genes with the most significantly associated NS SNVs, while regions associated with PD by a recent Genome Wide Association (GWA) study were enriched in genes containing PD-associated NS SNVs. By examining genes within GWA regions possessing rare PD-associated SNVs, we identified RAD51B. The protein-product of RAD51B interacts with that of its paralogue RAD51, which is associated with congenital mirror movements phenotypes, a phenotype also comorbid with PD.


Comprehensive analysis of epigenetics regulation, prognostic and the correlation with immune infiltrates of GPX7 in adult gliomas.

  • Wallax Augusto Silva Ferreira‎ et al.
  • Scientific reports‎
  • 2022‎

Gliomas are the most commonly occurring malignant brain tumor characterized by an immunosuppressive microenvironment accompanied by profound epigenetic changes, thus influencing the prognosis. Glutathione peroxidase 7 (GPX7) is essential for regulating reactive oxygen species homeostasis under oxidative stress. However, little is known about the function of GPX7 in gliomas. In this study, we hypothesized that GPX7 methylation status could influence biological functions and local immune responses that ultimately impact prognosis in adult gliomas. We conducted an integrated bioinformatics analysis mining GPX7 DNA methylation status, transcriptional and survival data of glioma patients. We discovered that GPX7 was remarkably increased in glioma tissues and cell lines, and was associated with poor prognosis. This upregulation was significantly linked to clinicopathological and molecular features, besides being expressed in a cell cycle-dependent manner. Our results consistently demonstrated that upregulation of GPX7 is tightly modulated by epigenetic processes, which also impacted the overall survival of patients with low-grade gliomas (LGG). Based on the analysis of biological functions, we found that GPX7 might be involved in immune mechanisms involving both innate and adaptive immunity, type I interferon production and regulation of synaptic transmission in LGG, whereas in GBM, it is mainly related to metabolic regulation of mitochondrial dynamics. We also found that GPX7 strongly correlates with immune cell infiltration and diverse immune cell markers, suggesting its role in tumor-specific immune response and in regulating the migration of immune cell types to the tumor microenvironment. Combining these multiple data, we provided the first evidence regarding the epigenetic-mediated regulatory mechanisms underlying GPX7 activation in gliomas. Furthermore, our study brings key insights into the significant effect of GPX7 in modulating both immune molecules and in immune cell infiltration in the microenvironment of gliomas, which might impact the patient outcome, opening up future opportunities to regulate the local immune response.


Ensemble Modeling Approach Targeting Heterogeneous RNA-Seq data: Application to Melanoma Pseudogenes.

  • Enrico Capobianco‎ et al.
  • Scientific reports‎
  • 2017‎

We studied the transcriptome landscape of skin cutaneous melanoma (SKCM) using 103 primary tumor samples from TCGA, and measured the expression levels of both protein coding genes and non-coding RNAs (ncRNAs). In particular, we emphasized pseudogenes potentially relevant to this cancer. While cataloguing the profiles based on the known biotypes, all the employed RNA-Seq methods generated just a small consensus of significant biotypes. We thus designed an approach to reconcile the profiles from all methods following a simple strategy: we selected genes that were confirmed as differentially expressed by the ensemble predictions obtained in a regression model. The main advantages of this approach are: 1) Selection of a high-confidence gene set identifying relevant pathways; 2) Use of a regression model whose covariates embed all method-driven outcomes to predict an averaged profile; 3) Method-specific assessment of prediction power and significance. Furthermore, the approach can be generalized to any biological system for which noisy RNA-Seq profiles are computed. As our analyses concerned bio-annotations of both high-quality protein coding genes and ncRNAs, we considered the associations between pseudogenes and parental genes (targets). Among the candidate targets that were validated, we identified PINK1, which is studied in patients with Parkinson and cancer (especially melanoma).


Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach.

  • Faisal A Alzahrani‎ et al.
  • Scientific reports‎
  • 2020‎

The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.


A mitochondrial function-related LncRNA signature predicts prognosis and immune microenvironment for breast cancer.

  • Yuan Wang‎ et al.
  • Scientific reports‎
  • 2023‎

Mitochondrial function, as the core of the cell's energy metabolism, is firmly connected to cancer metabolism and growth. However, the involvement of long noncoding RNAs (lncRNAs) related to mitochondrial function in breast cancer (BRCA) has not been thoroughly investigated. As a result, the objective of this research was to dissect the prognostic implication of mitochondrial function-related lncRNAs and their link to the immunological microenvironment in BRCA. The Cancer Genome Atlas (TCGA) database was used to acquire clinicopathological and transcriptome information for BRCA samples. Mitochondrial function-related lncRNAs were recognized by coexpression analysis of 944 mitochondrial function-related mRNAs obtained from the MitoMiner 4.0 database. A novel prognostic signature was built in the training cohort using integrated analysis of mitochondrial function-related lncRNA and the corresponding clinical information through univariate analysis, lasso regression, and stepwise multivariate Cox regression analysis. The prognostic worth was judged in the training cohort and validated in the test cohort. In addition, functional enrichment and immune microenvironment analyses were performed to explore the risk score on the basis of the prognostic signature. An 8-mitochondrial function-related lncRNA signature was generated by integrated analysis. Individuals within the higher-risk category had a worse overall survival rate (OS) (training cohort: P < 0.001; validation cohort: P < 0.001; whole cohort: P < 0.001). The risk score was identified as an independent risk factor by multivariate Cox regression analysis (training cohort: HR 1.441, 95% CI 1.229-1.689, P < 0.001; validation cohort: HR 1.343, 95% CI 1.166-1.548, P < 0.001; whole cohort: HR 1.241, 95% CI 1.156-1.333, P < 0.001). Following that, the predictive accuracy of the model was confirmed by the ROC curves. In addition, nomograms were generated, and the calibration curves revealed that the model had excellent prediction accuracy for 3- and 5-year OS. Besides, the higher-risk BRCA individuals have relatively decreased amounts of infiltration of tumor-killing immune cells, lower levels of immune checkpoint molecules, and immune function. We constructed and verified a novel mitochondrial function-related lncRNA signature that might accurately predict the outcome of BRCA, play an essential role in immunotherapy, and might be exploited as a therapeutic target for precise BRCA therapy.


Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.

  • Yu-Chao Li‎ et al.
  • Scientific reports‎
  • 2023‎

Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor. Conventional treatments have not achieved breakthroughs in improving survival. Therefore, novel molecular targets and biomarkers need to be identified. As signal transduction docks on the cell membrane, tetraspanins (TSPANs) are associated with various tumors; however, research on their role in GBM remains extremely scarce. Gene expression and clinicopathological characteristic data were obtained from GEPIA, CGGA, HPA, cBioPortal, and GSCA databases to analyze the mRNA and protein expression levels, prognostic value, clinical relevance, mutation status, and targeted drug sensitivity of TSPANs in GBM. Gene set enrichment analysis (GSEA), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for biological process enrichment. Data from TCGA and TCIA were used to construct the tumor immune microenvironment landscape of TSPANs. Different R software algorithms were used to analyze the immune score, immune cell infiltration, and immune checkpoint correlation. Univariate and multivariate analyses were performed for TSPAN4, which had the most significant predictive prognostic value, and a nomogram model was constructed to predict individual outcomes. The expression and function of TSPAN4 were verified in vitro. TSPAN3/4/6/11/12/18/23/24/25/26/27/28/29/30/31expressions were significantly upregulated in GBM, and TSPAN3/4/6/11/18/24/25/26/29/30 were strongly correlated with prognosis. The expression of multiple TSPANs significantly correlated with 1p/19q co-deletion status, IDH mutation status, recurrence, age, and tumor grade. GSEA and GO analyses revealed the potential contribution of TSPANs in cell adhesion and migration. Immune correlation analysis revealed that TSPANs are related to the formation of the GBM tumor microenvironment (TME) and may influence immunotherapy outcomes. TSPAN4 is an independent prognostic factor and TSPAN4 knockdown has been demonstrated to strongly inhibit glioma cell proliferation, invasion, and migration in vitro. We comprehensively elaborated the prognostic value and potential role of differentially expressed TSPANs in GBM, including molecules that scientists have previously overlooked. This study provides a novel and comprehensive perspective on the pathological mechanisms of GBM and the future direction of individualized tumor immunotherapy, which may be a critical link between GBM malignant progression and TME remodeling.


Comprehensive analysis of the SLC16A gene family in pancreatic cancer via integrated bioinformatics.

  • Shan Yu‎ et al.
  • Scientific reports‎
  • 2020‎

SLC16A family members play crucial roles in tumorigenesis and tumor progression. However, the exact role of distinct members in the SLC16A family in human pancreatic cancer remains unclear. Integrated bioinformatics analysis for the identification of therapeutic targets for certain cancers based on transcriptomics, proteomics and high-throughput sequencing could help us obtain novel information and understand potential underlying molecular mechanisms. In the present study, we investigated SLC16A family members in pancreatic cancer through accumulated data from GEO (Gene Expression Omnibus), TCGA (The Cancer Genome Atlas) and other available databases. The expression profile, clinical application significance and prognostic value of the SLC16A family for patients with pancreatic cancer were explored. SLC16A1, SLC16A3 and SLC16A13 exhibited biomarker potential for prognosis, and we further identified their related genes and regulatory networks, revealing core molecular pathways that require further investigation for pancreatic cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: