Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 150 papers

Merosin-deficient congenital muscular dystrophy type 1A: A case report.

  • Zhanwen He‎ et al.
  • Experimental and therapeutic medicine‎
  • 2013‎

The aim of this study was to characterize the clinical and genetic features of a 4-year-old female with merosin-deficient congenital muscular dystrophy type 1A (MDC1A). MDC1A is the most common form of congenital muscular dystrophy. MDC1A is caused by mutation of the laminin α-2 gene (LAMA2), localized to chromosome 6q22-23. Clinical presentation, as well as the results of neuro-imaging, electrophysiology and molecular genetic tests were used to evaluate a patient with MDC1A. The patient exhibited severe hypotonia and marked proximal weakness at 6 months of age, as well as delayed developmental milestones. The serum creatine kinase levels of the patient were elevated at 1,556 IU/l. Magnetic resonance imaging (MRI) showed that the white matter in the frontal, parietal, temporal and occipital lobes was abnormal with low signal intensities on T1-weighted images and high signal intensities on T2-weighted images; however, the cortex was normal. Sequencing of the 65 exons of the LAMA2 revealed a homozygous nonsense mutation in exon 50: a C>T exchange in nucleotide 7147 that resulted in a stop codon (Arg2383X stop). Molecular genetic testing is a reliable method for confirming a diagnosis of MDC1A. When a patient presents with severe congenital hypotonia, muscle weakness, high serum creatine kinase (CK) levels and white matter abnormalities, the evaluation may directly proceed to molecular genetic testing of the LAMA2 gene without performing a muscle biopsy.


Establishment of an induced pluripotent stem cell line (ICGi025-A) from fibroblasts of a patient with 46,XY,r(8)/45,XY,-8 mosaicism.

  • M M Gridina‎ et al.
  • Stem cell research‎
  • 2020‎

Ring chromosomes are structural aberrations commonly associated with disease phenotype. We consider necessary to create the iPSCs with a ring chromosome 8, which can be used for disease modeling and related research. The ICGi025-A iPSCs line was obtained by the reprogramming of the skin fibroblasts from a 1-year-old boy with 46,XY,r(8)/45,XY,-8 mosaicism, developmental delay, microcephaly, dysmorphic features, diffuse muscle hypotonia, moderate proximal muscle weakness, feeding problems, and motor alalia. The iPSCs had expression of the pluripotency-associated markers. In vitro differentiated cells expressed the markers of the cells of three germ layers. That data allowed us to conclude that ICGi025-A cells were pluripotent.


Case Report: SATB2-Associated Syndrome Overlapping With Clinical Mitochondrial Disease Presentation: Report of Two Cases.

  • Yuri A Zarate‎ et al.
  • Frontiers in genetics‎
  • 2021‎

SATB2-associated syndrome (SAS) is an autosomal dominant neurogenetic multisystemic disorder. We describe two individuals with global developmental delay and hypotonia who underwent an extensive evaluation to rule out an underlying mitochondrial disorder before their eventual diagnosis of SAS. Although the strict application of the clinical mitochondrial disease score only led to the designation of "possible" mitochondrial disorder for these two individuals, other documented abnormalities included nonspecific neuroimaging findings on magnetic resonance imaging and magnetic resonance spectroscopy, decreased complex I activity on muscle biopsy for patient 2, and variation in the size and relative proportion of types of muscle fibers in the muscle biopsies that were aligned with mitochondrial diseases. SAS should be in the differential diagnoses of mitochondrial disorders, and broad-spectrum diagnostic tests such as exome sequencing need to be considered early in the evaluation process of undiagnosed neurodevelopmental disorders.


Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy.

  • Irina T Zaharieva‎ et al.
  • Brain : a journal of neurology‎
  • 2016‎

Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy.


A novel mutation in NEB causing foetal nemaline myopathy with arthrogryposis during early gestation.

  • Maria L Rocha‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2021‎

Nemaline myopathies are a clinically and genetically heterogeneous group of congenital myopathies, mainly characterized by muscle weakness, hypotonia and respiratory insufficiency. Here, we report a male foetus of consanguineous parents with a severe congenital syndrome characterized by arthrogryposis detected at 13 weeks of gestation. We describe severe complex dysmorphic facial and musculoskeletal features by post mortem fetal examination confirming the prenatal diagnosis. Histomorphological and ultrastructural studies of skeletal muscle reveal mini-rods in myotubes caused by a novel homozygous splice-site mutation in NEB (NM_001164508, chr2:g.152,417,623C>A GRCh37.p11 | c.19,102-1G>T ENST00000397345.3). No rods were seen in the myocardium. We discuss the relevance of this mutation in the context of nemaline myopathies associated with early developmental musculoskeletal disorders.


A novel de novo ACTA1 variant in a patient with nemaline myopathy and mitochondrial Complex I deficiency.

  • Shpresa Pula‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2020‎

We describe the presentation and follow-up of a three-year-old girl with nemaline myopathy due to a de-novo variant in ACTA1 (encoding skeletal alpha actin) and moderately low enzyme level of Complex I of the mitochondrial respiratory chain. She presented in the neonatal period with hypotonia, followed by weakness in the facial, bulbar, respiratory and neck flexors muscles. A biopsy of her quadriceps muscle at the age of one year showed nemaline rods. Based on her clinical presentation of a congenital myopathy and histopathological features on a muscle biopsy, ACTA1 was sequenced, and this revealed a novel sequence variant, c.760 A>C p. (Asn254His). In addition, mitochondrial respiratory chain enzymatic activity of skeletal muscle biopsy showed a moderately low activity of complex I (nicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase). Disturbances of Complex I of the respiratory chain have been reported in patients with nemaline myopathy, although the mechanism remains unclear.


Importance of Skin Changes in the Differential Diagnosis of Congenital Muscular Dystrophies.

  • Uluç Yis‎ et al.
  • BioMed research international‎
  • 2016‎

Megaconial congenital muscular dystrophy (OMIM 602541) is characterized with early-onset hypotonia, muscle wasting, proximal weakness, cardiomyopathy, mildly elevated serum creatine kinase (CK) levels, and mild-to-moderate intellectual disability. We report two siblings in a consanguineous family admitted for psychomotor delay. Physical examination revealed proximal muscle weakness, contractures in the knee of elder sibling, diffuse mild generalized muscle atrophy, and dry skin with ichthyosis together with multiple nummular eczema in both siblings. Serum CK values were elevated up to 500 U/L. For genetic work-up, we performed whole exome sequencing (WES) after Nimblegen enrichment on the Illumina platform. The WES revealed a novel homozygous missense mutation in the Choline Kinase-Beta (CHKB) gene c.1031G>A (p.R344Q) in exon 9. Ichthyosis-like skin changes with intense pruritus and nummular eczema may lead to clinical diagnosis in cases with megaconial congenital muscular dystrophy.


Generation of two induced pluripotent stem cell lines from a 33-year-old central core disease patient with a heterozygous dominant c.14145_14156delCTACTGGGACA (p.Asn4715_Asp4718del) deletion in the RYR1 gene.

  • Karrison Driver‎ et al.
  • Stem cell research‎
  • 2023‎

Central core disease (CCD) is a congenital disorder that results in hypotonia, delayed motor development, and areas of reduced oxidative activity in the muscle fibre. Two induced pluripotent stem cell (iPSC) lines were generated from the lymphoblastoid cells of a 33-year-old male with CCD, caused by a previously unreported dominant c.14145_14156delCTACTGGGACA (p.Asn4715_Asp4718del) deletion in the RYR1 gene. Both lines demonstrated typical morphology, pluripotency, trilineage differentiation, and had a normal karyotype. As the first published iPSC model of CCD caused by an RYR1 variant these lines are a potential resource for further investigation of RYR1-related myopathies in a human context.


Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores.

  • Karen Majczenko‎ et al.
  • American journal of human genetics‎
  • 2012‎

Congenital myopathies are clinically and genetically heterogeneous diseases that typically present in childhood with hypotonia and weakness and are most commonly defined by changes observed in muscle biopsy. Approximately 40% of congenital myopathies are currently genetically unresolved. We identified a family with dominantly inherited congenital myopathy characterized by distal weakness and biopsy changes that included core-like areas and increased internalized nuclei. To identify the causative genetic abnormality in this family, we performed linkage analysis followed by whole-exome capture and next-generation sequencing. A splice-acceptor variant in previously uncharacterized CCDC78 was detected in affected individuals and absent in unaffected family members and > 10,000 controls. This variant alters RNA-transcript processing and results in a 222 bp in-frame insertion. CCDC78 is expressed in skeletal muscle, enriched in the perinuclear region and the triad, and found in intracellular aggregates in patient muscle. Modeling of the CCDC78 mutation in zebrafish resulted in changes mirroring the human disease that included altered motor function and abnormal muscle ultrastructure. Using a combination of linkage analysis, next-generation sequencing, and modeling in the zebrafish, we have identified a CCDC78 mutation associated with a unique myopathy with prominent internal nuclei and atypical cores.


Biallelic variants in ZNF142 lead to a syndromic neurodevelopmental disorder.

  • Maria B Christensen‎ et al.
  • Clinical genetics‎
  • 2022‎

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.


Novel bi-allelic variants expand the SPTBN4-related genetic and phenotypic spectrum.

  • Markus Buelow‎ et al.
  • European journal of human genetics : EJHG‎
  • 2021‎

Neurodevelopmental disorder with hypotonia, neuropathy, and deafness (NEDHND, OMIM #617519) is an autosomal recessive disease caused by homozygous or compound heterozygous variants in SPTBN4 coding for type 4 βIV-spectrin, a non-erythrocytic member of the β-spectrin family. Variants in SPTBN4 disrupt the cytoskeletal machinery that controls proper localization of ion channels and the function of axonal domains, thereby generating severe neurological dysfunction. We set out to analyze the genetic causes and describe the clinical spectrum of suspected cases of NEDHND. Variant screening was done by whole exome sequencing; clinical phenotypes were described according to the human phenotype ontology, and histochemical analysis was performed with disease-specific antibodies. We report four families with five patients harboring novel homozygous and compound heterozygous SPTBN4 variants, amongst them a multi-exon deletion of SPTBN4. All patients presented with the key features of NEDHND; severe muscular hypotonia, dysphagia, absent speech, gross motor, and mental retardation. Additional symptoms comprised horizontal nystagmus, epileptiform discharges in EEG without manifest seizures, and choreoathetosis. Muscle histology revealed both characteristics of myopathy and of neuropathy. This report expands the SPTBN4 variant spectrum, highlights the spectrum of morphological phenotypes of NEDHND-patients, and reveals clinical similarities between the NEDHND, non-5q SMA, and congenital myopathies.


Novel Compound Heterozygous Variants in TBCD Gene Associated with Infantile Neurodegenerative Encephalopathy.

  • Chih-Ling Chen‎ et al.
  • Children (Basel, Switzerland)‎
  • 2021‎

Mutations in tubulin-specific chaperon D (TBCD), the gene encoding one of the co-chaperons required for the assembly and disassembly of the α/β-tubulin heterodimers, have been reported to cause perturbed microtubule dynamics, resulting in debilitating early-onset progressive neurodegenerative disorder. Here, we identified two novel TBCD variants, c.1340C>T (p.Ala447Val), and c.817+2T>C, presented as compound heterozygotes in two affected siblings born to unaffected carrier parents. Clinical features included early-onset neurodegeneration, failure to thrive, respiratory failure, hypotonia, muscle weakness and atrophy and seizures. We established the genotype-phenotype relationship of these TBCD pathogenic variants and provided insight into the protein structural alteration that may contribute to this chaperone-associated tubulinopathy.


Case report: Novel frameshift mutation in LAMA2 gene causing congenital muscular dystrophy type 1A.

  • Natalia Diaz-Lombana‎ et al.
  • Frontiers in genetics‎
  • 2023‎

Congenital muscular dystrophy type 1A (CMD1A) is a rare autosomal recessive disorder caused by mutations in the LAMA2 gene. CMD1A is characterized by peripheral hypotonia and muscle weakness from the first months of life, cerebral white matter abnormalities, and elevated creatine phosphokinase (CPK) levels. We describe an 8-year-old girl from Colombia with clinical features compatible with CMD1A, severe scoliosis corrected with surgery, and feeding difficulty corrected with a gastrostomy. Whole-exome sequencing identified two heterozygous variants: a reported nonsense variant (LAMA2 NM_000426.3:c.4198C>T) and a novel likely pathogenic variant (LAMA2 NM_000426.3:c.9227_9243dup). This is the first genetically confirmed case of CMD1A in Colombia and the first report of the c.9227_9243dup variant causing CMD1A.


Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies.

  • Massimo Ganassi‎ et al.
  • Experimental cell research‎
  • 2022‎

Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.


Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism.

  • Adam C Gunning‎ et al.
  • American journal of human genetics‎
  • 2020‎

Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data.


Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

  • Jessica X Chong‎ et al.
  • American journal of human genetics‎
  • 2016‎

Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.


Severe congenital actin related myopathy with myofibrillar myopathy features.

  • Duygu Selcen‎
  • Neuromuscular disorders : NMD‎
  • 2015‎

Mutations in ACTA1 have been associated with different pathologic findings including nemaline myopathy, intranuclear rod myopathy, actin myopathy, cap myopathy, congenital fiber type disproportion, and core myopathy. Myofibrillar myopathies are morphologically distinct but genetically heterogeneous muscular dystrophies arising from mutations in Z-disk related proteins. We report a 26-month-old boy with significantly delayed motor development requiring mechanical ventilation and tube-feeding since birth. The muscle biopsy displayed typical features of myofibrillar myopathy with abnormal expression of multiple proteins. Whole exome sequencing revealed two-amino-acid duplication in ACTA1. In cell culture system, mutant actin was expressed at ~11% of wild-type, and mutant actin formed pleomorphic cytoplasmic aggregates whereas wild-type actin appeared in filamentous structures. We conclude that mutations in ACTA1 can cause pathologic features consistent with myofibrillar myopathy, and mutations in ACTA1 should be considered in patients with severe congenital hypotonia associated with muscle weakness and features of myofibrillar myopathy.


NDUFV1 mutations in complex I deficiency: Case reports and review of symptoms.

  • Vanessa Zanette‎ et al.
  • Genetics and molecular biology‎
  • 2021‎

Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.


De novo CACNA1D Ca2+ channelopathies: clinical phenotypes and molecular mechanism.

  • Nadine J Ortner‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2020‎

The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.


Clinical, genetic, and histological features of centronuclear myopathy in the Netherlands.

  • Stacha F I Reumers‎ et al.
  • Clinical genetics‎
  • 2021‎

Centronuclear myopathy (CNM) is a genetically heterogeneous congenital myopathy characterized by muscle weakness, atrophy, and variable degrees of cardiorespiratory involvement. The clinical severity is largely explained by genotype (DNM2, MTM1, RYR1, BIN1, TTN, and other rarer genetic backgrounds), specific mutation(s), and age of the patient. The histopathological hallmark of CNM is the presence of internal centralized nuclei on muscle biopsy. Information on the phenotypical spectrum, subtype prevalence, and phenotype-genotype correlations is limited. To characterize CNM more comprehensively, we retrospectively assessed a national cohort of 48 CNM patients (mean age = 32 ± 24 years, range 0-80, 54% males) from the Netherlands clinically, histologically, and genetically. All information was extracted from entries in the patient's medical records, between 2000 and 2020. Frequent clinical features in addition to muscle weakness and hypotonia were fatigue and exercise intolerance in more mildly affected cases. Genetic analysis showed variants in four genes (18 DNM2, 14 MTM1, 9 RYR1, and 7 BIN1), including 16 novel variants. In addition to central nuclei, histologic examination revealed a large variability of myopathic features in the different genotypes. The identification and characterization of these patients contribute to trial readiness.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: