Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 82 papers

Aberrant Membrane Composition and Biophysical Properties Impair Erythrocyte Morphology and Functionality in Elliptocytosis.

  • Hélène Pollet‎ et al.
  • Biomolecules‎
  • 2020‎

Red blood cell (RBC) deformability is altered in inherited RBC disorders but the mechanism behind this is poorly understood. Here, we explored the molecular, biophysical, morphological, and functional consequences of α-spectrin mutations in a patient with hereditary elliptocytosis (pEl) almost exclusively expressing the Pro260 variant of SPTA1 and her mother (pElm), heterozygous for this mutation. At the molecular level, the pEI RBC proteome was globally preserved but spectrin density at cell edges was increased. Decreased phosphatidylserine vs. increased lysophosphatidylserine species, and enhanced lipid peroxidation, methemoglobin, and plasma acid sphingomyelinase (aSMase) activity were observed. At the biophysical level, although membrane transversal asymmetry was preserved, curvature at RBC edges and rigidity were increased. Lipid domains were altered for membrane:cytoskeleton anchorage, cholesterol content and response to Ca2+ exchange stimulation. At the morphological and functional levels, pEl RBCs exhibited reduced size and circularity, increased fragility and impaired membrane Ca2+ exchanges. The contribution of increased membrane curvature to the pEl phenotype was shown by mechanistic experiments in healthy RBCs upon lysophosphatidylserine membrane insertion. The role of lipid domain defects was proved by cholesterol depletion and aSMase inhibition in pEl. The data indicate that aberrant membrane content and biophysical properties alter pEl RBC morphology and functionality.


Toxicity Assessment of Long-Term Exposure to Non-Thermal Plasma Activated Water in Mice.

  • Valentin Nastasa‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Non-thermal plasma activated water (PAW) has recently emerged as a powerful antimicrobial agent. Despite numerous potential bio-medical applications, studies concerning toxicity in live animals, especially after long-term exposure, are scarce. Our study aimed to assess the effects of long-term watering with PAW on the health of CD1 mice. PAW was prepared from distilled water with a GlidArc reactor according to a previously published protocol. The pH was 2.78. The mice received PAW (experimental group) or tap water (control group) daily for 90 days as the sole water source. After 90 days, the following investigations were performed on the euthanatized animals: gross necropsy, teeth mineral composition, histopathology, immunohistochemistry, hematology, blood biochemistry, methemoglobin level and cytokine profile. Mice tolerated PAW very well and no adverse effects were observed during the entire period of the experiment. Histopathological examination of the organs and tissues did not reveal any structural changes. Moreover, the expression of proliferation markers PCNA and Ki67 has not been identified in the epithelium of the upper digestive tract, indicating the absence of any pre- or neoplastic transformations. The results of our study demonstrated that long-term exposure to PAW caused no toxic effects and could be used as oral antiseptic solution in dental medicine.


FOXE1 polymorphisms and chronic exposure to nitrates in drinking water cause metabolic dysfunction, thyroid abnormalities, and genotoxic damage in women.

  • Diana Dennys Gandarilla-Esparza‎ et al.
  • Genetics and molecular biology‎
  • 2021‎

Nitrates in drinking water has been associated to adverse health effects, including changes in glucose and lipid levels, thyroid hormone imbalance and adverse reproductive effects. We analyzed metabolic and thyroid hormone alterations and genotoxic damage in women with chronic exposure to nitrates in drinking water. The concentration of nitrates in drinking water was quantified and according to this parameter, participants were divided into three exposure scenarios. Blood and urine samples were collected from 420 women living in Durango, Mexico and biomarkers were determined. We found nitrates concentrations in drinking water above the permissible limit (>50 mg/L), and an increase in the percentage of methemoglobin (p=0.0001), nitrite in blood plasma and urine (p=0.0001), glucose (p=0.0001), total cholesterol (p=0.001), LDL (p=0.001) and triglycerides (p=0.0001). We also found alterations in TSH (p=0.01), fT3 (p=0.0003), T4T (p=0.01) and fT4 (p=0.0004) hormones. Frequency of subclinical hypothyroidism was 8.33%; differences in FOXE1 (rs965513, rs1867277) genotypes distribution were found and both polymorphisms were associated with a decrease in TSH. A high percentage of micronucleus in binucleate lymphocyte cells was found (35%, p=0.0001). In conclusion, the chronic exposure to nitrates in water for human consumption caused metabolic and hormonal alterations and genotoxic damage in women.


Inhaled high dose nitric oxide is a safe and effective respiratory treatment in spontaneous breathing hospitalized patients with COVID-19 pneumonia.

  • Bijan Safaee Fakhr‎ et al.
  • Nitric oxide : biology and chemistry‎
  • 2021‎

Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19).


d-Galactose Decreases Anion Exchange Capability through Band 3 Protein in Human Erythrocytes.

  • Alessia Remigante‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

d-Galactose (d-Gal), when abnormally accumulated in the plasma, results in oxidative stress production, and may alter the homeostasis of erythrocytes, which are particularly exposed to oxidants driven by the blood stream. In the present investigation, the effect of d-Gal (0.1 and 10 mM, for 3 and 24 h incubation), known to induce oxidative stress, has been assayed on human erythrocytes by determining the rate constant of SO42- uptake through the anion exchanger Band 3 protein (B3p), essential to erythrocytes homeostasis. Moreover, lipid peroxidation, membrane sulfhydryl groups oxidation, glycated hemoglobin (% A1c), methemoglobin levels (% MetHb), and expression levels of B3p have been verified. Our results show that d-Gal reduces anion exchange capability of B3p, involving neither lipid peroxidation, nor oxidation of sulfhydryl membrane groups, nor MetHb formation, nor altered expression levels of B3p. d-Gal-induced %A1c, known to crosslink with B3p, could be responsible for rate of anion exchange alteration. The present findings confirm that erythrocytes are a suitable model to study the impact of high sugar concentrations on cell homeostasis; show the first in vitro effect of d-Gal on B3p, contributing to the understanding of mechanisms underlying an in vitro model of aging; demonstrate that the first impact of d-Gal on B3p is mediated by early Hb glycation, rather than by oxidative stress, which may be involved on a later stage, possibly adding more knowledge about the consequences of d-Gal accumulation.


Atherogenesis may involve the prooxidant and proinflammatory effects of ferryl hemoglobin.

  • László Potor‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2013‎

Oxidized cell-free hemoglobin (Hb), including covalently cross-linked Hb multimers, is present in advanced atherosclerotic lesions. Oxidation of Hb produces methemoglobin (Fe(3+)) and ferryl hemoglobin (Fe(4+) = O(2-)). Ferryl iron is unstable and can return to the Fe(3+) state by reacting with specific amino acids of the globin chains. In these reactions globin radicals are produced followed by termination reactions yielding covalently cross-linked Hb multimers. Despite the evanescent nature of the ferryl state, herein we refer to this oxidized Hb as "ferryl Hb." Our aim in this work was to study formation and biological effects of ferrylHb. We demonstrate that ferrylHb, like metHb, can release its heme group, leading to sensitization of endothelial cells (ECs) to oxidant-mediated killing and to oxidation of low-density lipoprotein (LDL). Furthermore, we observed that both oxidized LDL and lipids derived from human atherosclerotic lesions trigger Hb oxidation and subsequent production of covalently cross-linked ferrylHb multimers. Previously we showed that ferrylHb disrupts EC monolayer integrity and induces expression of inflammatory cell adhesion molecules. Here we show that when exposed to ferrylHb, EC monolayers exhibit increased permeability and enhanced monocyte adhesion. Taken together, interactions between cell-free Hb and atheroma lipids engage in a vicious cycle, amplifying oxidation of plaque lipids and Hb. These processes trigger EC activation and cytotoxicity.


A novel nine base deletion mutation in NADH-cytochrome b5 reductase gene in an Indian family with recessive congenital methemoglobinemia-type-II.

  • Prashant Warang‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2015‎

Recessive hereditary methemoglobinemia (RCM) associated with severe neurological abnormalities is a very rare disorder caused by NADH- cytochrome b5 reductase (cb5r) deficiency (Type II). We report a case of 11 month old male child who had severe mental retardation, microcephaly and gross global developmental delay with methemoglobin level of 61.1%. The diagnosis of NADH-CYB5R3 deficiency was made by the demonstration of significantly reduced NADH-CYB5R3 activity in the patient and intermediate enzyme activity in both the parents. Mutation analysis of the CYB5R gene revealed a novel nine nucleotide deletion in exon 6 leading to the elimination of 3 amino acid residues (Lys173, Ser174 and Val 175). To confirm that this mutation was not an artifact, we performed PCR-RFLP analysis using the restriction enzyme Drd I. As the normal sequence has a restriction recognition site for Drd I which was eliminated by the deletion, a single band of 603-bp was seen in the presence of the homozygous mutation. Molecular modeling analysis showed a significant effect of these 3 amino acids deletion on the protein structure and stability leading to a severe clinical presentation. A novel homozygous 9 nucleotide deletion (p.K173-p.V175del3) is shown to be segregated with the disease in this family. Knowing the profile of mutations would allow us to offer prenatal diagnosis in families with severe neurological disorders associated with RCM - Type II.


Peroxiredoxin-2 expression is increased in beta-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress.

  • Alessandro Matte‎ et al.
  • Free radical biology & medicine‎
  • 2010‎

Peroxiredoxin 2 (Prx2), the third most abundant cytoplasmic protein in red blood cells (RBCs), is involved in the defense against oxidative stress. Although much is known about Prx2 in healthy RBCs, its role in pathological RBCs remains largely unexplored. Here, we show that the expression and net content of Prx2 are markedly increased in RBCs from two mouse models of beta-thalassemia (beta-thal; Hbb(th/th) and Hbb(th3/+) strains). We also demonstrate that the increased expression of Prx2 correlates with the severity of the disease and that the amount of Prx2 bound to the membrane is markedly reduced in beta-thal mouse RBCs. To explore the impact of oxidative stress on Prx2 membrane association, we examined Prx2 dimerization and membrane translocation in murine RBCs exposed to various oxidants (phenylhydrazine, PHZ; diamide; H(2)O(2)). PHZ-treated RBCs, which mimic the membrane damage in beta-thal RBCs, exhibited a kinetic correlation among Prx2 membrane displacement, intracellular methemoglobin levels, and hemichrome membrane association, suggesting the possible masking of Prx2 docking sites by membrane-bound hemichromes, providing a possible mechanism for the accumulation of oxidized/dimerized Prx2 in the cytoplasm and the increased membrane damage in beta-thal RBCs. Thus, reduced access of Prx2 to the membrane in beta-thal RBCs represents a new factor that could contribute to the oxidative damage characterizing the pathology.


Oxidation of Erythrocytes Enhance the Production of Reactive Species in the Presence of Artemisinins.

  • Ioannis Tsamesidis‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.


Cut-off values for diagnosis of G6PD deficiency by flow cytometry in Thai population.

  • Anchalee Thedsawad‎ et al.
  • Annals of hematology‎
  • 2022‎

In heterozygous females, X-inactivation causes a change in glucose-6-phosphate dehydrogenase (G6PD) activity from normal to deficient. Most G6PD screening tests are used to accurately diagnose hemizygous males, but they are less reliable for diagnosing heterozygous females. This study established flow cytometric cut-off values for screening of G6PD deficiency in hemizygous males and heterozygous or homozygous females. We studied 205 (125 females, 80 males) leftover blood samples from quantitative methemoglobin reduction (MR) screening. G6PD gene mutations determined by multiplex amplification refractory mutation system-polymerase chain reaction and direct DNA sequencing were used as the gold standard reference. Accuracy of the test, including the sensitivity, specificity, and positive and negative predictive values, was analyzed using MedCalc software. The optimal cut-off values for classification of %red blood cells with normal G6PD activity or %bright cells into homozygous normal, heterozygous, and homozygous deficiency in females were 85.4-100%, 6.3-85.3%, and 0-6.2%, respectively (sensitivity 93.2%, specificity 100%). The cut-offs for classification into hemizygous normal and hemizygous deficiency in males were 76.5-100% and 0-76.4%, respectively (sensitivity 100%, specificity 96.5%). Flow cytometry can be used to differentiate heterozygous females with intermediate phenotype from homozygous females, but cannot distinguish between heterozygous females with extreme phenotype and homozygous females. By flow cytometry, heterozygous and homozygous deficiency was detected in 29.6% and 3.2% of females, respectively. Among males, hemizygous deficiency was found in 31.3%. Flow cytometry can be used to screen patients with G6PD deficiency, and reliably and efficiently identify heterozygous and homozygous females, and hemizygous males based on cellular G6PD activity.


Assessing modulators of cytochrome c oxidase activity in Galleria mellonella larvae.

  • Kristin L Frawley‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2019‎

Caterpillars of the greater wax moth, Galleria mellonella, are shown to be a useful invertebrate organism for examining mitochondrial toxicants (inhibitors of electron transport) and testing putative antidotes. Administration of sodium azide, sodium cyanide, or sodium (hydro)sulfide by intra-haemocoel injection (through a proleg) results in a dose-dependent paralysed state in the larvae lasting from <1 to ~40 min. The duration of paralysis is easily monitored, because if turned onto their backs, the larvae right themselves onto their prolegs once they are able to move again. The efficacy of putative antidotes to the three toxicants can routinely be assessed by observing shortened periods of paralysis with larvae given toxicant and antidote compared to larvae administered only the same dose of toxicant. The validity of the approach is demonstrated with agents previously shown to be antidotal towards cyanide intoxication in mice; namely, sodium nitrite and CoN4[11.3.1] (cobalt(II/III) 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7)2,11,13,15-pentaenyl cation). These same compounds are shown to be antidotal towards all three toxicants in the G. mellonella caterpillars; findings that may prove important in relation to azide and sulfide poisonings, for which there are currently no effective antidotes available. The observation that sodium nitrite ameliorates cyanide toxicity in the larvae is additionally interesting because it unambiguously demonstrates that the antidotal action of nitrites does not require the involvement of methemoglobin, contributing to the resolution of an ongoing controversy.


Albumin binding revitalizes NQO1 bioactivatable drugs as novel therapeutics for pancreatic cancer.

  • Lei Dou‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2022‎

NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme significantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) tumors compared to the associated normal tissues. NQO1 bioactivatable drugs, such as β-lapachone (β-lap), can be catalyzed to generate reactive oxygen species (ROS) for direct tumor killing. However, the extremely narrow therapeutic window caused by methemoglobinemia and hemolytic anemia severely restricts its further clinical translation despite considerable efforts in the past 20 years. Previously, we demonstrated that albumin could be utilized to deliver cytotoxic drugs selectively into KRAS-mutant PDAC with a much expanded therapeutic window due to KRAS-enhanced macropinocytosis and reduced neonatal Fc receptor (FcRn) expression in PDAC. Herein, we analyzed the expression patterns of albumin and FcRn across major organs in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mice. The tumors were the predominant tissues with both elevated albumin and reduced FcRn expression, thus making them an ideal target for albumin-based drug delivery. Quantitative proteomics analysis of tissue samples from 5 human PDAC patients further confirmed the elevated albumin/FcRn ratio. Given such a compelling biological rationale, we designed a nanoparticle albumin-bound prodrug of β-lap, nab-(pro-β-lap), to achieve PDAC targeted delivery and expand the therapeutic window of β-lap. We found that nab-(pro-β-lap) uptake was profoundly enhanced by KRAS mutation. Compared to the solution formulation of the parent drug β-lap, nab-(pro-β-lap) showed enhanced safety due to much lower rates of methemoglobinemia and hemolytic anemia, which was confirmed both in vitro and in vivo. Furthermore, nab-(pro-β-lap) significantly inhibited tumor growth in subcutaneously implanted KPC xenografts and enhanced the pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γ-H2AX). Thus, nab-(pro-β-lap), with improved safety and antitumor efficacy, offers a drug delivery strategy with translational viability for β-lap in pancreatic cancer therapy.


Molecular Dynamic Simulation Analysis of a Novel Missense Variant in CYB5R3 Gene in Patients with Methemoglobinemia.

  • Asmat Ullah‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2023‎

Background and Objective: Mutations in the CYB5R3 gene cause reduced NADH-dependent cytochrome b5 reductase enzyme function and consequently lead to recessive congenital methemoglobinemia (RCM). RCM exists as RCM type I (RCM1) and RCM type II (RCM2). RCM1 leads to higher methemoglobin levels causing only cyanosis, while in RCM2, neurological complications are also present along with cyanosis. Materials and Methods: In the current study, a consanguineous Pakistani family with three individuals showing clinical manifestations of cyanosis, chest pain radiating to the left arm, dyspnea, orthopnea, and hemoptysis was studied. Following clinical assessment, a search for the causative gene was performed using whole exome sequencing (WES) and Sanger sequencing. Various variant effect prediction tools and ACMG criteria were applied to interpret the pathogenicity of the prioritized variants. Molecular dynamic simulation studies of wild and mutant systems were performed to determine the stability of the mutant CYB5R3 protein. Results: Data analysis of WES revealed a novel homozygous missense variant NM_001171660.2: c.670A > T: NP_001165131.1: p.(Ile224Phe) in exon 8 of the CYB5R3 gene located on chromosome 22q13.2. Sanger sequencing validated the segregation of the identified variant with the disease phenotype within the family. Bioinformatics prediction tools and ACMG guidelines predicted the identified variant p.(Ile224Phe) as disease-causing and likely pathogenic, respectively. Molecular dynamics study revealed that the variant p.(Ile224Phe) in the CYB5R3 resides in the NADH domain of the protein, the aberrant function of which is detrimental. Conclusions: The present study expanded the variant spectrum of the CYB5R3 gene. This will facilitate genetic counselling of the same and other similar families carrying mutations in the CYB5R3 gene.


Insulin resistance in prostate cancer patients and predisposing them to acute ischemic heart disease.

  • Udayan Ray‎ et al.
  • Bioscience reports‎
  • 2019‎

Lack of insulin or insulin resistance (IR) plays a central role in diabetes mellitus and makes diabetics prone to acute ischemic heart disease (AIHD). It has likewise been found that many cancer patients, including prostate cancer patients die of AIHD. Previously it has been delineated from our laboratory that dermcidin could induce anomalous platelet aggregation in AIHD and also impaired nitric oxide and insulin activity and furthermore dermcidin was also found in a few types of cancer patients. To determine the role of this protein in prostatic malignancy, a retrospective case-control study was conducted and blood was collected from prostate cancer patients and healthy normal volunteers. So, we measured the level of dermcidin protein and analyzed the IR by Homeostasis Model Assessment (HOMA) score calculation. Nitric oxide was measured by methemoglobin method. HDL, glycated hemoglobin (HbA1c), BMI, hs-cTroponin-T were measured for the validation of the patients' status in the presence of Dermcidin isoform-2 (DCN-2). Multiple logistic regression model adjusted for age and BMI identified that the HOMA score was significantly elevated in prostate cancer patients (OR = 7.19, P<0.001). Prostate cancer patients are associated with lower level of NO and higher level of both proteins dermcidin (OR = 1.12, P<0.001) and hs-TroponinT (OR = 1.76, P<0.001). From the results, it can be interpreted that IR plays a key role in the pathophysiology of prostate cancer where dermcidin was the cause of IR through NO inhibition leading to AIHD was also explained by high-sensitive fifth generation cTroponin-T (hs-cTroponinT) and HbA1c level which are associated with endothelial dysfunction.


Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design.

  • Gary G A Silkstone‎ et al.
  • The Biochemical journal‎
  • 2016‎

Hemoglobin (Hb)-based oxygen carriers (HBOC) have been engineered to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects linked to intrinsic heme-mediated oxidative toxicity and nitric oxide (NO) scavenging. Redox-active tyrosine residues can facilitate electron transfer between endogenous antioxidants and oxidative ferryl heme species. A suitable residue is present in the α-subunit (Y42) of Hb, but absent from the homologous position in the β-subunit (F41). We therefore replaced this residue with a tyrosine (βF41Y, Hb Mequon). The βF41Y mutation had no effect on the intrinsic rate of lipid peroxidation as measured by conjugated diene and singlet oxygen formation following the addition of ferric(met) Hb to liposomes. However, βF41Y significantly decreased these rates in the presence of physiological levels of ascorbate. Additionally, heme damage in the β-subunit following the addition of the lipid peroxide hydroperoxyoctadecadieoic acid was five-fold slower in βF41Y. NO bioavailability was enhanced in βF41Y by a combination of a 20% decrease in NO dioxygenase activity and a doubling of the rate of nitrite reductase activity. The intrinsic rate of heme loss from methemoglobin was doubled in the β-subunit, but unchanged in the α-subunit. We conclude that the addition of a redox-active tyrosine mutation in Hb able to transfer electrons from plasma antioxidants decreases heme-mediated oxidative reactivity and enhances NO bioavailability. This class of mutations has the potential to decrease adverse side effects as one component of a HBOC product.


Physical and Chemical Processes and the Morphofunctional Characteristics of Human Erythrocytes in Hyperglycaemia.

  • Victor V Revin‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Background: This study examines the effect of graduated hyperglycaemia on the state and oxygen-binding ability of hemoglobin, the correlation of phospholipid fractions and their metabolites in the membrane, the activity of proteolytic enzymes and the morphofunctional state of erythrocytes. Methods: Conformational changes in the molecule of hemoglobin were determined by Raman spectroscopy. The structure of the erythrocytes was analyzed using laser interference microscopy (LIM). To determine the activity of NADN-methemoglobinreductase, we used the P.G. Board method. The degree of glycosylation of the erythrocyte membranes was determined using a method previously described by Felkoren et al. Lipid extraction was performed using the Bligh and Dyer method. Detection of the phospholipids was performed using V. E. Vaskovsky method. Results: Conditions of hyperglycaemia are characterized by a low affinity of hemoglobin to oxygen, which is manifested as a parallel decrease in the content of hemoglobin oxyform and the growth of deoxyform, methemoglobin and membrane-bound hemoglobin. The degree of glycosylation of membrane proteins and hemoglobin is high. For example, in the case of hyperglycaemia, erythrocytic membranes reduce the content of all phospholipid fractions with a simultaneous increase in lysoforms, free fatty acids and the diacylglycerol (DAG). Step wise hyperglycaemia in incubation medium and human erythrocytes results in an increased content of peptide components and general trypsin-like activity in the cytosol, with a simultaneous decreased activity of μ-calpain and caspase 3. Conclusions: Metabolic disorders and damage of cell membranes during hyperglycaemia cause an increase in the population of echinocytes and spherocytes. The resulting disorders are accompanied with a high probability of intravascular haemolysis.


Antioxidant Activity of Quercetin in a H2O2-Induced Oxidative Stress Model in Red Blood Cells: Functional Role of Band 3 Protein.

  • Alessia Remigante‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 μM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42- uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 μM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.


Direct comparison of inorganic nitrite and nitrate on vascular dysfunction and oxidative damage in experimental arterial hypertension.

  • Paul Stamm‎ et al.
  • Nitric oxide : biology and chemistry‎
  • 2021‎

Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.


Anticholinergic Toxidrome as a Possible Explanation for Methylene Blue Toxicity.

  • Saud Aldeghaither‎ et al.
  • The American journal of case reports‎
  • 2023‎

BACKGROUND Methylene blue has multiple uses in medicine. It is generally used to treat refractory vasoplegia and methemoglobin toxicity, and can be used as a dye to localize the parathyroid glands intra-operatively. In refractory vasoplegia, methylene blue inhibits endothelial nitric oxide and guanylate cyclase, causing vasoconstriction and potentially stabilizing blood pressure. Multiple complications have been associated with the use of methylene blue. These are related to either the sole effect of methylene blue or the combined effect of methylene blue and certain antidepressants, such as selective serotonin reuptake inhibitors (SSRIs). To the best of our knowledge, in the setting of post-cardiac surgery vasoplegia, there have been no reports of the neurological toxicity of methylene blue in the absence of SSRI use. In this case report, we describe the anticholinergic manifestations associated with the use of methylene blue in post-cardiac surgery vasoplegia. CASE REPORT A male patient in his mid-sixties with severe mitral regurgitation underwent elective mitral valve replacement. Postoperatively, he was hypotensive and required a high dose of vasopressors. Methylene blue was administered to treat refractory vasoplegia. The patient became anuric and febrile, with bilateral mydriasis. Internal cooling and continuous renal replacement therapy were initiated, and symptoms rapidly resolved. The patient was discharged after prolonged hospitalization with a permanent catheter for hemodialysis. CONCLUSIONS Anticholinergic toxidrome may explain the neurological adverse effects associated with high doses of methylene blue. Physicians should be cautious when using methylene blue in combination with other anticholinergic drugs and in conditions of renal failure. The development of methylene blue toxicity warrants the urgent discontinuation of the agent and early drug elimination.


Pyocyanina contributory factor in haem acquisition and virulence enhancement of Porphyromonas gingivalis in the lung [corrected].

  • Malgorzata Benedyk‎ et al.
  • PloS one‎
  • 2015‎

Several recent studies show that the lungs infected with Pseudomonas aeruginosa are often co-colonised by oral bacteria including black-pigmenting anaerobic (BPA) Porphyromonas species. The BPAs have an absolute haem requirement and their presence in the infected lung indicates that sufficient haem, a virulence up-regulator in BPAs, must be present to support growth. Haemoglobin from micro-bleeds occurring during infection is the most likely source of haem in the lung. Porphyromonas gingivalis displays a novel haem acquisition paradigm whereby haemoglobin must be firstly oxidised to methaemoglobin, facilitating haem release, either by gingipain proteolysis or capture via the haem-binding haemophore HmuY. P. aeruginosa produces the blue phenazine redox compound, pyocyanin. Since phenazines can oxidise haemoglobin, it follows that pyocyanin may also facilitate haem acquisition by promoting methaemoglobin production. Here we show that pyocyanin at concentrations found in the CF lung during P. aeruginosa infections rapidly oxidises oxyhaemoglobin in a dose-dependent manner. We demonstrate that methaemoglobin formed by pyocyanin is also susceptible to proteolysis by P. gingivalis Kgp gingipain and neutrophil elastase, thus releasing haem. Importantly, co-incubation of oxyhaemoglobin with pyocyanin facilitates haem pickup from the resulting methemoglobin by the P. gingivalis HmuY haemophore. Mice intra-tracheally challenged with viable P. gingivalis cells plus pyocyanin displayed increased mortality compared to those administered P. gingivalis alone. Pyocyanin significantly elevated both methaemoglobin and total haem levels in homogenates of mouse lungs and increased the level of arginine-specific gingipain activity from mice inoculated with viable P. gingivalis cells plus pyocyanin compared with mice inoculated with P. gingivalis only. These findings indicate that pyocyanin, by promoting haem availability through methaemoglobin formation and stimulating of gingipain production, may contribute to virulence of P. gingivalis and disease severity when co-infecting with P. aeruginosa in the lung.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: