Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 2,631 papers

Synovium-Derived Mesenchymal Stem Cell Transplantation in Cartilage Regeneration: A PRISMA Review of in vivo Studies.

  • Kendrick To‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2019‎

Articular cartilage damaged through trauma or disease has a limited ability to repair. Untreated, focal lesions progress to generalized changes including osteoarthritis. Musculoskeletal disorders including osteoarthritis are the most significant contributor to disability globally. There is increasing interest in the use of mesenchymal stem cells (MSCs) for the treatment of focal chondral lesions. There is some evidence to suggest that the tissue type from which MSCs are harvested play a role in determining their ability to regenerate cartilage in vitro and in vivo. In humans, MSCs derived from synovial tissue may have superior chondrogenic potential. We carried out a systematic literature review on the effectiveness of synovium-derived MSCs (sMSCs) in cartilage regeneration in in vivo studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Twenty studies were included in our review; four examined the use of human sMSCs and 16 were conducted using sMSCs harvested from animals. Most studies reported successful cartilage repair with sMSC transplantation despite the variability of animals, cell harvesting techniques, methods of delivery, and outcome measures. We conclude that sMSC transplantation holds promise as a treatment option for focal cartilage defects. We believe that defining the cell population being used, establishing standardized methods for MSC delivery, and the use of objective outcome measures should enable future high quality studies such as randomized controlled clinical trials to provide the evidence needed to manage chondral lesions optimally.


Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial.

  • Jiaowei Gu‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Cerebral palsy (CP) is a syndrome of childhood movement and posture disorders. Clinical evidence is still limited and sometimes inconclusive about the benefits of human umbilical cord mesenchymal stem cells (hUC-MSCs) for CP. We conducted a randomized trial to evaluate the safety and efficacy of hUC-MSC transplantation concomitant with rehabilitation in patients with CP.


660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

  • Xianchao Li‎ et al.
  • Neural regeneration research‎
  • 2014‎

Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.


Mesenchymal Stem Cell Transplantation Increases Antioxidant Protein Expression and Ameliorates GP91/ROS/Inflammasome Signals in Diabetic Cardiomyopathy.

  • Wei-Syun Hu‎ et al.
  • Journal of cardiovascular development and disease‎
  • 2022‎

Cardiomyopathy is one of the complications associated with diabetes. Due to its high prevalence, diabetic cardiomyopathy has become an urgent issue for diabetic patients. Various pathological signals are related to diabetic cardiomyopathy progress, including inflammasome. Mesenchymal stem cell transplantation is full of potential for the treatment of diabetic cardiomyopathy because of stem cell cardiac regenerative capability. This study investigates whether mesenchymal stem cell transplantation shows therapeutic effects on diabetic cardiomyopathy through inflammasome signaling regulation.


Exosomes Released From Human Bone Marrow-Derived Mesenchymal Stem Cell Attenuate Acute Graft-Versus-Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation in Mice.

  • Ke-Liang Li‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Mesenchymal stromal cell-derived exosomes have been applied for the treatment of several immune diseases. This study aimed to explore the effect of human bone marrow-derived mesenchymal stem cell (hBMSC)-derived exosomes on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT).


Mesenchymal stem cell transplantation improves biomechanical properties of vaginal tissue following full-thickness incision in aged rats.

  • Ofra Ben Menachem-Zidon‎ et al.
  • Stem cell reports‎
  • 2022‎

Pelvic organ prolapse (POP) is common among post-menopausal women and is associated with bladder, bowel, and sexual dysfunction. Surgical repair with the patients' native tissues is sub-optimal with high reoperation rates, potentially due to diminished age-related healing. We demonstrate that systemic transplantation of mesenchymal stem cells (MSCs) improves healing of full-thickness vaginal incision in the vaginal wall of old rats, as suggested by both histological and functional analysis. Transplanted MSCs homed and survived at the surgical vaginal site. Attenuation of the injury-induced inflammatory response, increased angiogenesis, and reduced matrix metalloproteinase 9 expression were observed at the surgical site of transplanted rats. Most importantly, the functional biomechanical properties of the healed vagina, at day 30 post-injury, were improved in MSC-transplanted, compared with sham-operated non-transplanted, old rats. These results may pave the way to further translational studies toward clinical transplantation of MSCs adjuvant to POP repair for the improvement of surgical outcome.


Efficacy and safety of mesenchymal stem cells co-infusion in allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis.

  • Teng Li‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is life-saving for severe hematological conditions. However, its outcomes need further improvement, and co-infusion of mesenchymal stem cells (MSCs) may show promise. A growing body of research on this subject exists, while the results of different trials are conflicting. A systematic review and meta-analysis is needed to appraise the real efficacy and safety of MSC co-transplantation in allo-HSCT.


Cardioprotective Effects of Wharton Jelly Derived Mesenchymal Stem Cell Transplantation in a Rodent Model of Myocardial Injury.

  • Taghrid Gaafar‎ et al.
  • International journal of stem cells‎
  • 2017‎

Whartons jelly-derived mesenchymal stem cells are a valuable alternative source that possess multipotent properties, easy to obtain and available in large scale compared to BMMSCs. We investigated the possibility of cardiac function improvement post isoproterenol induced cardiac injury in a rat model following human WJMSCs transplantation.


Mesenchymal stem cell transplantation in burn wound healing: uncovering the mechanisms of local regeneration and tissue repair.

  • Mohamed E El-Sayed‎ et al.
  • Histochemistry and cell biology‎
  • 2024‎

Burn injuries pose a significant healthcare burden worldwide, often leading to long-term disabilities and reduced quality of life. To explore the impacts of the transplantation of mesenchymal stem cells (MSCs) on the healing of burns and the levels of serum cytokines, 60 fully grown Sprague-Dawley rats were randomly divided into three groups (n = 20 each): group I (control), group II (burn induction), and group III (burn induction + bone marrow (BM)-MSC transplantation). Groups II and III were further divided into four subgroups (n = 5 each) based on euthanasia duration (7, 14, 21, and 28 days post transplant). The experiment concluded with an anesthesia overdose for rat death. After 7, 14, 21, and 28 days, the rats were assessed by clinical, laboratory, and histopathology investigations. The results revealed significant improvements in burn healing potentiality in the group treated with MSC. Furthermore, cytokine levels were measured, with significant increases in interleukin (IL)-6 and interferon alpha (IFN) observed, while IL-10 and transforming growth factor beta (TGF-β) decreased at 7 days and increased until 28 days post burn. Also, the group that underwent the experiment exhibited increased levels of pro-inflammatory cytokines and the anti-inflammatory cytokine IL-10 when compared to the control group. Histological assessments showed better re-epithelialization, neovascularization, and collagen deposition in the experimental group, suggesting that MSC transplantation in burn wounds may promote burn healing by modulating the immune response and promoting tissue regeneration.


Therapeutic Evidence of Human Mesenchymal Stem Cell Transplantation for Cerebral Palsy: A Meta-Analysis of Randomized Controlled Trials.

  • Baocheng Xie‎ et al.
  • Stem cells international‎
  • 2020‎

Cerebral palsy (CP) is a kind of movement and posture disorder syndrome in early childhood. In recent years, human mesenchymal stem cell (hMSC) transplantation has become a promising therapeutic strategy for CP. However, clinical evidence is still limited and controversial about clinical efficacy of hMSC therapy for CP. Our aim is to evaluate the efficacy and safety of hMSC transplantation for children with CP using a meta-analysis of randomized controlled trials (RCTs). We conducted a systematic literature search including Embase, PubMed, ClinicalTrials.gov, Cochrane Controlled Trials Register databases, Chinese Clinical Trial Registry, and Web of Science from building database to February 2020. We used Cochrane bias risk assessment for the included studies. The result of pooled analysis showed that hMSC therapy significantly increased gross motor function measure (GMFM) scores (standardized mean difference (SMD) = 1.10, 95%CI = 0.66-1.53, P < 0.00001, high-quality evidence) and comprehensive function assessment (CFA) (SMD = 1.30, 95%CI = 0.71-1.90, P < 0.0001, high-quality evidence) in children with CP, compared with the control group. In the subgroup analysis, the results showed that hMSC therapy significantly increased GMFM scores of 3, 6, and 12 months and CFA of 3, 6, and 12 months. Adverse event (AE) of upper respiratory infection, diarrhea, and constipation was not statistically significant between the two groups. This meta-analysis synthesized the primary outcomes and suggested that hMSC therapy is beneficial, effective, and safe in improving GMFM scores and CFA scores in children with CP. In addition, subgroup analysis showed that hMSC therapy has a lasting positive benefit for CP in 3, 6, and 12 months.


Bone mesenchymal stem cell transplantation via four routes for the treatment of acute liver failure in rats.

  • Lihua Sun‎ et al.
  • International journal of molecular medicine‎
  • 2014‎

In the present study, we assessed the efficiency of four BMSC transplantation methods as a therapy for liver failure. A rat model (80 Sprague-Dawley rats) of D-galactosamine (D-gal)/lipopolysaccharide (LPS)-induced acute liver failure (ALF) was established and the rats were divided into 5 groups: a hepatic artery injection group, a portal vein injection group, a vena caudalis injection group, an intraperitoneal injection group and a control group (16 per group). Following transplantation, the liver tissue and blood samples were collected on days 1, 3 and 7, we detected the EdU (5-ethynyl-2'-deoxyuridine)-labeled cells homing to the liver tissue and assessed the proliferating cell nuclear antigen (PCNA) and cysteine-containing aspartate-specific protease (caspase)-3 expression in the liver tissue and detected the levels of stromal cell-derived factor 1 (SDF-1) and hepatocyte growth factor (HGF) in the liver tissues. Compared with the control group, the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and damage to the liver tissue in the hepatic artery group, the portal vein group and the vena caudalis group improved in vivo. The expression of PCNA and HGF in the liver was higher and caspase-3 expression was lower in the hepatic artery injection group, the portal vein injection group and the vena caudalis injection group than that in the intraperitoneal injection and control groups. The EdU-labeled BMSCs were only observed homing to the liver tissue in these three groups. However, no significant differences were observed between these three groups. Liver function in the rats with ALF was improved following BMSC transplantation via 3 endovascular implantation methods (through the hepatic artery, portal vein and vena caudalis). These 3 methods were effective in transplanting BMSCs for the treatment of ALF. However, the selection of blood vessel in the implantation pathway does not affect the transplantation outcome. Transplantation via intraperitoneal injection showed no therapeutic effect in our animal experiments.


Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study.

  • Dandan Wang‎ et al.
  • Arthritis research & therapy‎
  • 2014‎

In our present single-center pilot study, umbilical cord (UC)-derived mesenchymal stem cells (MSCs) had a good safety profile and therapeutic effect in severe and refractory systemic lupus erythematosus (SLE). The present multicenter clinical trial was undertaken to assess the safety and efficacy of allogeneic UC MSC transplantation (MSCT) in patients with active and refractory SLE.


Effect of mesenchymal stem cell transplantation on brain-derived neurotrophic factor expression in rats with Tourette syndrome.

  • Xiumei Liu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2016‎

The aim of the present study was to investigate the effect of bone marrow mesenchymal stem cell (MSC) transplantation on brain-derived neurotrophic factor (BDNF) expression in the striatum of Tourette syndrome (TS) rats. In addition, the possible mechanism of MSC transplantation in the treatment of TS was investigated. A total of 72 Wistar rats were randomly allocated into the control (sham surgery) group and the two experimental groups, including the TS+vehicle and TS+MSC. MSCs were co-cultured with 5-bromodeoxyuridine for 24 h for labeling prior to grafting. An autoimmune TS rat model was successfully established in the present study. Rat MSCs were cultured and expanded using density gradient centrifugation in vitro, identified by flow cytometry and then transplanted into the striata of the TS+MSC group rats. The mRNA and protein expression levels of BDNF were detected by RT-qPCR and ELISA, respectively. The results indicated that the stereotypic behavior of TS rats was reduced 7 days after MSC transplantation, while the mRNA and protein BDNF levels in the striatum increased, compared with the sham surgery group (P<0.05). In addition, the BDNF mRNA and protein expression level was lower in the striatum of TS+MSC transplantation, compared with that in TS+vehicle rats. In conclusion, intrastriatal transplantation of MSCs may provide relief from stereotypic TS behavior, since the BDNF level was reduced in TS rats after MSC transplantation.


Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy.

  • So Yoon Ahn‎ et al.
  • Scientific reports‎
  • 2018‎

Recently, we have demonstrated that concurrent hypothermia and mesenchymal stem cells (MSCs) transplantation synergistically improved severe neonatal hypoxic ischemic encephalopathy (HIE). The current study was designed to determine whether hypothermia could extend the therapeutic time window of MSC transplantation for severe neonatal HIE. To induce HIE, newborn rat pups were exposed to 8% oxygen for 2 h following unilateral carotid artery ligation on postnatal day (P) 7. After approving severe HIE involving >50% of the ipsilateral hemisphere volume, hypothermia (32 °C) for 2 days was started. MSCs were transplanted 2 days after HIE modeling. Follow-up brain MRI, sensorimotor function tests, assessment of inflammatory cytokines in the cerebrospinal fluid (CSF), and histological evaluation of peri-infarction area were performed. HIE induced progressively increasing brain infarction area over time, increased cell death, reactive gliosis and brain inflammation, and impaired sensorimotor function. All these damages observed in severe HIE showed better, robust improvement with a combination treatment of hypothermia and delayed MSC transplantation than with either stand-alone therapy. Hypothermia itself did not significantly reduce brain injury, but broadened the therapeutic time window of MSC transplantation for severe newborn HIE.


Observation of the effect of bone marrow mesenchymal stem cell transplantation by different interventions on cirrhotic rats.

  • Xiaoling Zhou‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2019‎

Bone marrow mesenchymal stem cells (BMSCs) transplantation has attracted attention for the treatment of liver cirrhosis and end-stage liver diseases. Therefore, in this study, we evaluated the effect of different methods of BMSCs transplantation in the treatment of liver cirrhosis in rats. Seventy-two male Sprague-Dawley rats were divided into 7 groups: 10 were used to extract BMSCs, 10 were used as normal group, and the remaining 52 rats were randomly divided into five groups for testing: control group, BMSCs group, BMSCs+granulocyte colony-stimulating factor (G-CSF) group, and BMSCs+Jisheng Shenqi decoction (JSSQ) group. After the end of the intervention course, liver tissue sections of rats were subjected to hematoxylin and eosin (H&E) and Masson staining, and pathological grades were scored. Liver function [aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB)] and hepatic fibrosis markers [hyaluronidase (HA), laminin (LN), type III procollagen (PCIII), type IV collagen (CIV)] were measured. BMSCs+JSSQ group had the best effect of reducing ALT and increasing ALB after intervention therapy (P<0.05). The reducing pathological scores and LN, PCIII, CIV of BMSCs+G-CSF group and BMSCs+JSSQ group after intervention therapy were significant, but there was no significant difference between the two groups (P>0.05). The effect of JSSQ on improving stem cell transplantation in rats with liver cirrhosis was confirmed. JSSQ combined with BMSCs could significantly improve liver function and liver pathology scores of rats with liver cirrhosis.


Influence of mesenchymal stem cell transplantation on stereotypic behavior and dopamine levels in rats with Tourette syndrome.

  • Xiumei Liu‎ et al.
  • PloS one‎
  • 2013‎

Tourette syndrome (TS) is a heterogeneous neuropsychiatric disorder. Chronic motor and phonic tics are central symptoms in TS patients. For some patients, tics are intractable to any traditional treatment and cause lifelong impairment and life-threatening symptoms. New therapies should be developed to address symptoms and overt manifestations of TS. Transplantation of neurogenic stem cells might be a viable approach in TS treatment.


Transplantation of gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis.

  • Yongchun Gu‎ et al.
  • Arthritis research & therapy‎
  • 2016‎

Rheumatoid arthritis (RA) is a chronic, progressive, and inflammatory autoimmune disease which primarily affects the small arthrodial joints. The aim of this study was to test whether transplantation of mesenchymal stem cells derived from gingival tissue (GMSCs) could ameliorate collagen-induced arthritis (CIA), and to explore the role of the FasL/Fas pathway in the underlying mechanism.


Mesenchymal stem cell transplantation enhancement in myocardial infarction rat model under ultrasound combined with nitric oxide microbubbles.

  • Jiayi Tong‎ et al.
  • PloS one‎
  • 2013‎

This study evaluated the effects of ultrasound combined with the homemade nitric oxide (NO) micro-bubble destruction on the in vitro proliferation, apoptosis, and migration of mesenchymal stem cells (MSCs). Furthermore, we studied whether or not irradiation of the NO micro-bubble combined with bone-marrow derived MSC infusion had a better effect on treating myocardial infarction. The possible mechanism of MSC delivery into the infarcted myocardium was also investigated.


Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated.

  • J Zhu‎ et al.
  • Neuroscience‎
  • 2015‎

Cellular therapy has provided hope for restoring neurological function post stroke through promoting endogenous neurogenesis, angiogenesis and synaptogenesis. The current study was based on the observation that transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) promoted the neurological function improvement in stroked mice and meanwhile enhanced angiogenesis in the stroked hemisphere. Grafted hUCMSCs secreted human vascular endothelial growth factor A (VEGF-A). Notch1 signaling was activated after stroke and also in the grafted hUCMSCs. To address the potential mechanism that might mediate such pro-angiogenic effect, we established a hUCMSC-neuron co-culture system. Neurons were subjected to oxygen glucose deprivation (OGD) injury before co-culturing to mimic the in vivo cell transplantation. Consistent with the in vivo data, co-culture medium claimed from hUCMSC-OGD neuron co-culture system significantly promoted the capillary-like tube formation of brain-derived endothelial cells. Moreover, coincident with our in vivo data, Notch 1 signaling activation was detected in hUCMSCs after co-cultured with OGD neurons as demonstrated by the up-regulation of key Notch1 signaling components Notch1 and Notch1 intercellular domain (NICD). In addition, OGD-neuron co-culture also increased the VEGF-A production by hUCMSCs. To verify whether Notch1 activation was involved in the pro-angiogenic effect, γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was added into the co-culture medium before co-culture. It turned out that DAPT significantly prevented the Notch1 activation in hUCMSCs after co-culture with OGD neurons. More importantly, the pro-angiogenic effect of hUCMSCs was remarkably abolished by DAPT addition as demonstrated by inhibited capillary-like tube formation and less VEGF-A production. Regarding how Notch1 signaling was linked with VEGF-A secretion, we provided some clue that Notch1 effector Hes1 mRNA expression was significantly up-regulated by OGD-neuron co-culturing and down-regulated after additional treatment of DAPT. In summary, our data provided evidence that the VEGF-A secretion from hUCMSCs after being triggered by OGD neurons is Notch1 signaling associated. This might be a possible mechanism that contributes to the angiogenic effect of hUCMSC transplantation in stroked brain.


Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation.

  • Oliver Treacy‎ et al.
  • PloS one‎
  • 2012‎

Adult mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential which makes them attractive targets for regenerative medicine applications. However, to date, therapeutic success of MSC-therapy is limited and the genetic modification of MSCs using viral vectors is one option to improve their therapeutic potential. Ex-vivo genetic modification of MSCs using recombinant adenovirus (Ad) could be promising to reduce undesired immune responses as Ad will be removed before cell/tissue transplantation. In this regard, we investigated whether Ad-modification of MSCs alters their immunological properties in vitro and in vivo. We found that Ad-transduction of MSCs does not lead to up-regulation of major histocompatibility complex class I and II and co-stimulatory molecules CD80 and CD86. Moreover, Ad-transduction caused no significant changes in terms of pro-inflammatory cytokine expression, chemokine and chemokine receptor and Toll-like receptor expression. In addition, Ad-modification of MSCs had no affect on their ability to suppress T cell proliferation in vitro. In vivo injection of Ad-transduced MSCs did not change the frequency of various immune cell populations (antigen presenting cells, T helper and cytotoxic T cells, natural killer and natural killer T cells) neither in the blood nor in tissues. Our results indicate that Ad-modification has no major influence on the immunological properties of MSCs and therefore can be considered as a suitable gene vector for therapeutic applications of MSCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: