Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,252 papers

Topical or oral treatment of peach flower extract attenuates UV-induced epidermal thickening, matrix metalloproteinase-13 expression and pro-inflammatory cytokine production in hairless mice skin.

  • Chung Shil Kwak‎ et al.
  • Nutrition research and practice‎
  • 2018‎

Ultraviolet radiation (UV) is a major cause of skin photoaging. Previous studies reported that ethanol extract (PET) of Prunus persica (L.) Batsch flowers (PPF, peach flowers) and its subfractions, particularly the ethylacetate (PEA) and n-butanol extracts (PBT), have potent antioxidant activity and attenuate the UV-induced matrix metalloproteinase (MMP) expression in human skin cells. In this study, we investigated the protective activity of PPF extract against UV-induced photoaging in a mouse model.


Is there new hope for therapeutic matrix metalloproteinase inhibition?

  • Roosmarijn E Vandenbroucke‎ et al.
  • Nature reviews. Drug discovery‎
  • 2014‎

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that form a family of 24 members in mammals. Evidence of the pathological roles of MMPs in various diseases, combined with their druggability, has made them attractive therapeutic targets. Initial drug discovery efforts focused on the roles of MMPs in cancer progression, and more than 50 MMP inhibitors have been investigated in clinical trials in various cancers. However, all of these trials failed. Reasons for failure include the lack of inhibitor specificity and insufficient knowledge about the complexity of the disease biology. MMPs are also known to be involved in several inflammatory processes, and there are new therapeutic opportunities for MMP inhibitors to treat such diseases. In this Review, we discuss the recent advances made in understanding the role of MMPs in inflammatory diseases and the therapeutic potential of MMP inhibition in those conditions.


Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer.

  • Evette S Radisky‎ et al.
  • Journal of mammary gland biology and neoplasia‎
  • 2010‎

Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit.


Magnolol reduces UVB-induced photodamage by regulating matrix metalloproteinase activity.

  • A-Rang Im‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2015‎

In this study, we evaluated the anti-photoaging activity of magnolol in UV-irradiated hairless mice, and hypothesized that magnolol would prevent photoaging in these animals. The inhibitory effect of magnolol on wrinkle formation was determined by analyzing the skin replica, histologically examining the epidermal thickness, and identifying damage to the collagen fibers. The protective effects of magnolol on UVB-induced skin photoaging were examined by determining the level of MMPs and mitogen-activated protein kinases (MAPKs). Exposure to UVB radiation significantly increased skin thickness and wrinkle grade, but magnolol treatment significantly reduced the average length and depth of wrinkles, and this was correlated with the inhibition of collagen fiber loss. The magnolol-treated group had remarkably decreased activity levels of MMP-1, -9, and -13 compared to the corresponding levels in the vehicle-treated UVB-irradiated group. These results indicate that magnolol prevents skin photoaging in UVB-irradiated hairless mice.


Unexpected timely fracture union in matrix metalloproteinase 9 deficient mice.

  • Masato Yuasa‎ et al.
  • PloS one‎
  • 2018‎

Immediately following a fracture, a fibrin laden hematoma is formed to prevent bleeding and infection. Subsequently, the organized removal of fibrin, via the protease plasmin, is essential to permit fracture repair through angiogenesis and ossification. Yet, when plasmin activity is lost, the depletion of fibrin alone is insufficient to fully restore fracture repair, suggesting the existence of additional plasmin targets important for fracture repair. Previously, activated matrix metalloproteinase 9 (MMP-9) was demonstrated to function in fracture repair by promoting angiogenesis. Given that MMP-9 is a defined plasmin target, it was hypothesized that pro-MMP-9, following plasmin activation, promotes fracture repair. This hypothesis was tested in a fixed murine femur fracture model with serial assessment of fracture healing. Contrary to previous findings, a complete loss of MMP-9 failed to affect fracture healing and union through 28 days post injury. Therefore, these results demonstrated that MMP-9 is dispensable for timely fracture union and cartilage transition to bone in fixed femur fractures. Pro-MMP-9 is therefore not a significant target of plasmin in fracture repair and future studies assessing additional plasmin targets associated with angiogenesis are warranted.


Matrix metalloproteinase promotes elastic fiber degradation in ligamentum flavum degeneration.

  • Kazuki Sugimoto‎ et al.
  • PloS one‎
  • 2018‎

Ligamentum flavum (LF) hypertrophy in lumbar spinal canal stenosis (LSCS) is characterized by a loss of elastic fibers and fibrosis. Chronic inflammation is thought to be responsible for the histological change but the mechanism underlying elastic fiber degradation remains unclear. Given that matrix metalloproteinase (MMP)-2 and -9 have elastolytic activity and are partly regulated by inflammatory cytokines such as interleukin (IL)-6, in this study, we investigated whether MMPs mediate LF degeneration using 52 LF samples obtained during lumbar surgery, including 31 LSCS and 21 control specimens. We confirmed by histological analysis that the LSCS samples exhibited severe degenerative changes compared with the controls. We found that MMP-2 was upregulated in LF tissue from patients with LSCS at the mRNA and protein levels, whereas MMP-9 expression did not differ between the two groups. The MMP-2 level was positively correlated with LF thickness and negatively correlated with the area occupied by elastic fibers. IL-6 mRNA expression was also increased in LF tissue from patients with LSCS and positively correlated with that of MMP-2. Signal transducer and activator of transcription (STAT)3, a component of the IL-6 signaling pathway, was activated in hypertrophied LF tissues. Our in vitro experiments using fibroblasts from LF tissue revealed that IL-6 increased MMP-2 expression, secretion, and activation via induction of STAT3 signaling, and this effect was reversed by STAT3 inhibitor treatment. Moreover, elastin degradation was promoted by IL-6 stimulation in LF fibroblast culture medium. These results indicate that MMP-2 induction by IL-6/STAT3 signaling in LF fibroblasts can degrade elastic fibers, leading to LF degeneration in LSCS.


Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors.

  • Marilena Tauro‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2013‎

The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the 'vicious cycle' occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs. In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform. In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure-activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies.


Computational study of effective matrix metalloproteinase 9 (MMP9) targeting natural inhibitors.

  • Naimeng Liu‎ et al.
  • Aging‎
  • 2021‎

The present study screened ideal lead natural compounds that could target and inhibit matrix metalloproteinase 9 (MMP9) protein from the ZINC database to develop drugs for clear cell renal cell carcinoma (CCRCC)-targeted treatment.


Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B.

  • Natalia V Gounko‎ et al.
  • Scientific reports‎
  • 2016‎

Matrix metalloproteinases (MMP) play critical roles in a variety of immune reactions by facilitating cell migration, and affect cell communication by processing both cytokines and cell surface receptors. Based on published data indicating that MMP-9 is upregulated upon T cell activation and also in the thymus upon the induction of negative selection, we investigated the contribution of MMP-9 into mouse T cell development and differentiation in the thymus. Our data suggest that MMP-9 deficiency does not result in major abnormalities in the development of any conventionally selected or agonist selected subsets and does not interfere with thymocyte apoptosis and clearance, and that MMP-9 expression is not induced in immature T cells at any stage of their thymic development.


Role of serum matrix metalloproteinase in the diagnosis of gastric cancer.

  • Jian Liu‎ et al.
  • Pakistan journal of medical sciences‎
  • 2020‎

To determine the clinical value of a matrix metalloproteinase (MMP) antibody array in diagnosing gastric cancer (GC).


Membrane-type 1 matrix metalloproteinase regulates fibronectin assembly and N-cadherin adhesion.

  • Takahisa Takino‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Fibronectin matrix formation requires the increased cytoskeletal tension generated by cadherin adhesions, and is suppressed by membrane-type 1 matrix metalloproteinase (MT1-MMP). In a co-culture of Rat1 fibroblasts and MT1-MMP-silenced HT1080 cells, fibronectin fibrils extended from Rat1 to cell-matrix adhesions in HT1080 cells, and N-cadherin adhesions were formed between Rat1 and HT1080 cells. In control HT1080 cells contacting with Rat1 fibroblasts, cell-matrix adhesions were formed in the side away from Rat1 fibroblasts, and fibronectin assembly and N-cadherin adhesions were not formed. The role of N-cadherin adhesions in fibronectin matrix formation was studied using MT1-MMP-silenced HT1080 cells. MT1-MMP knockdown promoted fibronectin matrix assembly and N-cadherin adhesions in HT1080 cells, which was abrogated by double knockdown with either integrin β1 or fibronectin. Conversely, inhibition of N-cadherin adhesions by its knockdown or treatment with its neutralizing antibody suppressed fibronectin matrix formation in MT1-MMP-silenced cells. These results demonstrate that fibronectin assembly initiated by MT1-MMP knockdown results in increase of N-cadherin adhesions, which are prerequisite for further fibronectin matrix formation.


The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer.

  • Chuhan Chung‎ et al.
  • Laboratory investigation; a journal of technical methods and pathology‎
  • 2011‎

The vacuolar-ATPase (v-ATPase) is a proton transporter found on many intracellular organelles and the plasma membrane (PM). The v-ATPase on PMs of cancer cells may contribute to their invasive properties in vitro. Its relevance to human cancer tissues remains unclear. We investigated whether the expression and cellular localization of v-ATPase corresponded to the stage of human pancreatic cancer, and its effect on matrix metalloproteinase (MMP) activation in vitro. The intensity of v-ATPase staining increased significantly across the range of pancreatic histology from normal ducts to pancreatic intraepithelial neoplasms (PanIN), and finally pancreatic ductal adenocarcinoma (PDAC). Low-grade PanIN lesions displayed polarized staining confined to the basal aspect of the cell in the majority (86%) of fields examined. High-grade PanIN lesions and PDAC showed intense and diffuse v-ATPase localization. In pancreatic cancer cells, PM-associated v-ATPase colocalized with cortactin, a component of the leading edge that helps direct MMP release. Blockade of the v-ATPase with concanamycin or short-hairpin RNA targeting the V₁E subunit reduced MMP-9 activity; this effect was greatest in cells with prominent PM-associated v-ATPase. In cells with detectable MMP-2 activities, however, treatment with concanamycin markedly increased MMP-2's most activated forms. V-ATPase blockade inhibited functional migration and invasion in those cells with predominantly MMP-9 activity. These results indicate that human PDAC specimens show loss of v-ATPase polarity and increased expression that correlates with increasing invasive potential. Thus, v-ATPase selectively modulates specific MMPs that may be linked to an invasive cancer phenotype.


The NAD-Dependent Deacetylase Sirtuin-1 Regulates the Expression of Osteogenic Transcriptional Activator Runt-Related Transcription Factor 2 (Runx2) and Production of Matrix Metalloproteinase (MMP)-13 in Chondrocytes in Osteoarthritis.

  • Koh Terauchi‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Aging is one of the major pathologic factors associated with osteoarthritis (OA). Recently, numerous reports have demonstrated the impact of sirtuin-1 (Sirt1), which is the NAD-dependent deacetylase, on human aging. It has been demonstrated that Sirt1 induces osteogenic and chondrogenic differentiation of mesenchymal stem cells. However, the role of Sirt1 in the OA chondrocytes still remains unknown. We postulated that Sirt1 regulates a hypertrophic chondrocyte lineage and degeneration of articular cartilage through the activation of osteogenic transcriptional activator Runx2 and matrix metalloproteinase (MMP)-13 in OA chondrocytes. To verify whether sirtuin-1 (Sirt1) regulates chondrocyte activity in OA, we studied expressions of Sirt1, Runx2 and production of MMP-13, and their associations in human OA chondrocytes. The expression of Sirt1 was ubiquitously observed in osteoarthritic chondrocytes; in contrast, Runx2 expressed in the osteophyte region in patients with OA and OA model mice. OA relating catabolic factor IL-1βincreased the expression of Runx2 in OA chondrocytes. OA chondrocytes, which were pretreated with Sirt1 inhibitor, inhibited the IL-1β-induced expression of Runx2 compared to the control. Since the Runx2 is a promotor of MMP-13 expression, Sirt1 inactivation may inhibit the Runx2 expression and the resultant down-regulation of MMP-13 production in chondrocytes. Our findings suggest thatSirt1 may regulate the expression of Runx2, which is the osteogenic transcription factor, and the production of MMP-13 from chondrocytes in OA. Since Sirt1 activity is known to be affected by several stresses, including inflammation and oxidative stress, as well as aging, SIRT may be involved in the development of OA.


Membrane-type 1 matrix metalloproteinase modulates focal adhesion stability and cell migration.

  • Takahisa Takino‎ et al.
  • Experimental cell research‎
  • 2006‎

Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in extracellular matrix-induced cell migration and the activation of extracellular signal-regulated kinase (ERK). We showed here that transfection of the MT1-MMP gene into HeLa cells promoted fibronectin-induced cell migration, which was accompanied by fibronectin degradation and reduction of stable focal adhesions, which function as anchors for actin-stress fibers. MT1-MMP expression attenuated integrin clustering that was induced by adhesion of cells to fibronectin. The attenuation of integrin clustering was abrogated by MT1-MMP inhibition with a synthetic MMP inhibitor, BB94. When cultured on fibronectin, HT1080 cells, which endogenously express MT1-MMP, showed so-called motile morphology with well-organized focal adhesion formation, well-oriented actin-stress fiber formation, and the lysis of fibronectin through trails of cell migration. Inhibition of endogenous MT1-MMP by BB94 treatment or expression of the MT1-MMP carboxyl-terminal domain, which negatively regulates MT1-MMP activity, resulted in the suppression of fibronectin lysis and cell migration. BB94 treatment promoted stable focal adhesion formation concomitant with enhanced phosphorylation of tyrosine 397 of focal adhesion kinase (FAK) and reduced ERK activation. These results suggest that lysis of the extracellular matrix by MT1-MMP promotes focal adhesion turnover and subsequent ERK activation, which in turn stimulates cell migration.


Febuxostat, a Xanthine Oxidase Inhibitor, Decreased Macrophage Matrix Metalloproteinase Expression in Hypoxia.

  • Shuoyu Wei‎ et al.
  • Biomedicines‎
  • 2020‎

Macrophages in the atheroma region produce matrix metalloproteinases (MMPs) and decrease plaque stability. Tissue oxygen tension decreases in the arterial wall of the atherosclerotic region. Hypoxia inducible factor (HIF)-1α plays a critical role in the transcriptional activation of hypoxia inducible genes. However, the precise roles of HIF-1α independent pathways in hypoxic responses are largely unknown. Xanthine oxidase (XO) is an enzyme that utilizes molecular oxygen and produces reactive oxygen species (ROS). Here, we show that ROS derived from XO increases MMP-3, -10, and -13 expression in murine macrophages. We found that the transcript levels of macrophage MMP-3, -10, and -13 were increased in hypoxic conditions. Hypoxia induced MMP expression in HIF-1α deficient macrophages. N-acetylcysteine (NAC) or febuxostat, an XO inhibitor, suppressed MMP expression in murine macrophages. Febuxostat decreased the incidence of plaque rupture in apolipoprotein-E-deficient mice. Our results indicate that febuxostat stabilized atherosclerotic plaque via suppressing the activities of macrophage MMP-9 and -13. Febuxostat administration is a potential therapeutic option in the management of atherosclerotic patients.


Betulin suppressed interleukin-1β-induced gene expression, secretion and proteolytic activity of matrix metalloproteinase in cultured articular chondrocytes and production of matrix metalloproteinase in the knee joint of rat.

  • Ho Jong Ra‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2017‎

We investigated whether betulin affects the gene expression, secretion and proteolytic activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of betulin. Rabbit articular chondrocytes were cultured and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of betulin on IL-1β-induced secretion and proteolytic activity of MMP-3 was investigated using western blot analysis and casein zymography, respectively. Effect of betulin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) betulin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) betulin inhibited the secretion and proteolytic activity of MMP-3; (3) betulin suppressed the production of MMP-3 protein in vivo. These results suggest that betulin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.


Effect of oleanolic acid on the activity, secretion and gene expression of matrix metalloproteinase-3 in articular chondrocytes in vitro and the production of matrix metalloproteinase-3 in vivo.

  • Dong-Geun Kang‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2017‎

In the present study, we tried to examine whether oleanolic acid regulates the activity, secretion and gene expression of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as the production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effect of oleanolic acid. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. In rabbit articular chondrocytes, the effects of oleanolic acid on IL-1β-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of oleanolic acid on in vivo MMP-3 protein production was also examined, after intra-articular injection to the knee joint of rat. The results were as follows: (1) oleanolic acid inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) oleanolic acid reduced the secretion and proteolytic activity of MMP-3; (3) oleanolic acid suppressed the production of MMP-3 protein in vivo. These results suggest that oleanolic acid can regulate the activity, secretion and gene expression of MMP-3, by directly acting on articular chondrocytes.


Matrix metalloproteinase-3 inhibitor retards treadmill running-induced cartilage degradation in rats.

  • Guo-Xin Ni‎ et al.
  • Arthritis research & therapy‎
  • 2011‎

The effect of intra-articular injection of matrix metalloproteinase (MMP)-3 inhibitor was investigated in a rat model to understand the role of MMP-3 in cartilage degradation induced by excessive loading from running.


Higenamine Reduces Fine-Dust-Induced Matrix Metalloproteinase (MMP)-1 in Human Keratinocytes.

  • DongHyeon Kim‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Environmental pollutants such as fine dust are increasingly linked to premature skin aging. In this study, we investigated the protective effects of higenamine, a natural plant alkaloid, against fine-dust-induced skin aging in human keratinocytes (HaCaT cells). We found that higenamine significantly attenuated fine-dust-induced expression of matrix metalloproteinase-1 (MMP-1), a key enzyme involved in collagen degradation. Furthermore, higenamine was found to modulate fine-dust-induced AP-1 and NF-κB transactivation, which are crucial factors for MMP-1 transcription. Higenamine also impeded fine-dust-induced phosphorylation in specific pathways related to AP-1 and NF-κB activation, and effectively alleviated reactive oxygen species (ROS) production, a key factor in oxidative stress caused by fine dust exposure. These results suggest that higenamine exerts protective effects against fine-dust-induced skin aging, primarily through its MMP-1 inhibitory properties and ability to mitigate ROS-induced oxidative damage. Our data highlight the potential of higenamine as an effective ingredient in skincare products designed to combat environmental skin damage.


Isoliquiritigenin Inhibits IL-1β-Induced Production of Matrix Metalloproteinase in Articular Chondrocytes.

  • Lei Zhang‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2018‎

Osteoarthritis (OA) is a major joint disease in which inflammatory cytokine interleukin-1β (IL-1β) and matrix metalloproteinases (MMPs) play a pivotal role. Isoliquiritigenin has been reported to have anti-inflammation activity. In this study, the effect of isoliquiritigenin on IL-1β-induced production of matrix metalloproteinase and nuclear factor κB (NF-κB) activation was analyzed. We treated primary cultured articular chondrocytes with isoliquiritigenin and the expressions of MMPs were analyzed on mRNA and protein level. The phosphorylation of IκBa and p65 was analyzed to detect NF-κB activation. We also used in vivo model by treating mice with isoliquiritigenin and detecting the level of MMPs. IL-1β induced NF-κB activation and MMP-1, MMP-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 production on chondrocytes. A 10-μM isoliquiritigenin treatment significantly inhibited IL-1β-induced NF-κB activation and these MMPs production on chondrocytes. Injecting isoliquiritigenin into rat knee joint also inhibited IL-1β-induced NF-κB activation and MMPs production in articular cartilage. Isoliquiritigenin treatment inhibited IL-1β-induced MMPs production and NF-κB activation both in vitro and in vivo, suggesting a potential therapeutic role of isoliquiritigenin to treat osteoarthritis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: