Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,251 papers

Dysregulation of protein phosphatase 2A in parkinson disease and dementia with lewy bodies.

  • Hye-Jin Park‎ et al.
  • Annals of clinical and translational neurology‎
  • 2016‎

Protein phosphatase 2A (PP2A) is a heterotrimeric holoenzyme composed of a catalytic C subunit, a structural A subunit, and one of several regulatory B subunits that confer substrate specificity. The assembly and activity of PP2A are regulated by reversible methylation of the C subunit. α-Synuclein, which aggregates in Parkinson disease (PD) and dementia with Lewy bodies (DLB), is phosphorylated at Ser129, and PP2A containing a B55α subunit is a major phospho-Ser129 phosphatase. The objective of this study was to investigate PP2A in α-synucleinopathies.


Correlation of microglial activation with white matter changes in dementia with Lewy bodies.

  • Nicolas Nicastro‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

Dementia with Lewy bodies (DLB) is characterized by alpha-synuclein protein deposition with variable degree of concurrent Alzheimer's pathology. Neuroinflammation is also increasingly recognized as a significant contributor to degeneration. We aimed to examine the relationship between microglial activation as measured with [11C]-PK11195 brain PET, MR diffusion tensor imaging (DTI) and grey matter atrophy in DLB. Nineteen clinically probable DLB and 20 similarly aged controls underwent 3T structural MRI (T1-weighted) and diffusion-weighted imaging. Eighteen DLB subjects also underwent [11C]-PK11195 PET imaging and 15 had [11C]-Pittsburgh compound B amyloid PET, resulting in 9/15 being amyloid-positive. We used Computational Anatomy Toolbox (CAT12) for volume-based morphometry (VBM) and Tract-Based Spatial Statistics (TBSS) for DTI to assess group comparisons between DLB and controls and to identify associations of [11C]-PK11195 binding with grey/white matter changes and cognitive score in DLB patients. VBM analyses showed that DLB had extensive reduction of grey matter volume in superior frontal, temporal, parietal and occipital cortices (family-wise error (FWE)-corrected p < 0.05). TBSS showed widespread changes in DLB for all DTI parameters (reduced fractional anisotropy, increased diffusivity), involving the corpus callosum, corona radiata and superior longitudinal fasciculus (FWE-corrected p < 0.05). Higher [11C]-PK11195 binding in parietal cortices correlated with widespread lower mean and radial diffusivity in DLB patients (FWE-corrected p < 0.05). Furthermore, preserved cognition in DLB (higher Addenbrookes Cognitive Evaluation revised score) also correlated with higher [11C]-PK11195 binding in frontal, temporal, and occipital lobes. However, microglial activation was not significantly associated with grey matter changes. Our study suggests that increased microglial activation is associated with a relative preservation of white matter and cognition in DLB, positioning neuroinflammation as a potential early marker of DLB etio-pathogenesis.


Dementia with Lewy bodies research consortia: A global perspective from the ISTAART Lewy Body Dementias Professional Interest Area working group.

  • Fabrizia D'Antonio‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2021‎

Dementia with Lewy bodies (DLB) research has seen a significant growth in international collaboration over the last three decades. However, researchers face a challenge in identifying large and diverse samples capable of powering longitudinal studies and clinical trials. The DLB research community has begun to focus efforts on supporting the development and harmonization of consortia, while also continuing to forge networks within which data and findings can be shared. This article describes the current state of DLB research collaborations on each continent. We discuss several established DLB cohorts, many of whom have adopted a common framework, and identify emerging collaborative initiatives that hold the potential to expand DLB networks and diversify research cohorts. Our findings identify geographical areas into which the global DLB networks should seek to expand, and we propose strategies, such as the creation of data-sharing platforms and the harmonization of protocols, which may further potentiate international collaboration.


Functional connectivity in cortical regions in dementia with Lewy bodies and Alzheimer's disease.

  • Eva R Kenny‎ et al.
  • Brain : a journal of neurology‎
  • 2012‎

Using resting-state functional magnetic resonance imaging, spontaneous low-frequency fluctuations in the blood oxygenation level-dependent signal were measured to investigate connectivity between key brain regions hypothesized to be differentially affected in dementia with Lewy bodies compared with Alzheimer's disease and healthy controls. These included connections of the hippocampus, because of its role in learning, and parietal and occipital areas involved in memory, attention and visual processing. Connectivity was investigated in 47 subjects aged 60 years and over: 15 subjects with dementia with Lewy bodies, 16 subjects with Alzheimer's disease and 16 control subjects. Subjects were scanned using a 3 Tesla magnetic resonance imaging system. The mean blood oxygenation level-dependent signal time series was extracted from seed regions in the hippocampus, posterior cingulate cortex, precuneus and primary visual cortex and correlated with all other brain voxels to determine functional connectivity. Both subjects with dementia with Lewy bodies and Alzheimer's disease showed greater connectivity than control subjects. Compared with controls, the dementia with Lewy bodies group had greater connectivity between the right posterior cingulate cortex and other brain areas. In dementia with Lewy bodies, there were no significant differences in hippocampal connectivity compared with controls, but in Alzheimer's disease left hippocampal connectivity was greater compared with controls. There were no significant differences between groups for precuneus or primary visual cortex connectivity. No seed regions showed significantly less connectivity in subjects with dementia with Lewy bodies or Alzheimer's disease compared with controls. We found greater connectivity with the posterior cingulate in dementia with Lewy bodies and with the hippocampus in Alzheimer's disease. Consistent with the known relative preservation of memory in dementia with Lewy bodies compared with Alzheimer's disease, hippocampal connectivity was not found to be greater in dementia with Lewy bodies. Importantly, while metabolic imaging shows functional change in primary visual cortex in dementia with Lewy bodies, which is hypothesized to account for visual hallucinations, we found connectivity with this region to be unaffected. This implicates areas beyond visual sensory input level in the visual symptoms and visual-perceptual dysfunction seen in dementia with Lewy bodies.


A comprehensive screening of copy number variability in dementia with Lewy bodies.

  • Celia Kun-Rodrigues‎ et al.
  • Neurobiology of aging‎
  • 2019‎

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.


Glutamate Transporter GLT1 Expression in Alzheimer Disease and Dementia With Lewy Bodies.

  • Paula Garcia-Esparcia‎ et al.
  • Frontiers in aging neuroscience‎
  • 2018‎

Glutamate transporter solute carrier family 1, member 2 (GLT1/EAAT2), a major modulator of glutamate homeostasis in astrocytes, is assessed in post-mortem human brain samples of frontal cortex area 8 in advanced stages of Alzheimer disease (AD) and terminal stages of dementia with Lewy bodies (DLB) in order to gain understanding of astrogliopathy in diseases manifested by dementia. Glial fibrillary acidic protein (GFAP) mRNA expression is significantly increased in AD but not in DLB, whereas GLT1, vesicular glutamate transporter 1 (vGLUT1) and aldehyde dehydrogenase 1 family member 1 (ALDH1L1) are not modified in AD and DLB when compared with controls. GLT1 protein levels are not altered in AD and DLB but GFAP and ALDH1L1 are significantly increased in AD, and GFAP in DLB. As a result, a non-significant decrease in the ratio between GLT1 and GFAP, and between GLT1 and ALDH1L1, is found in both AD and DLB. Double-labeling immunofluorescence and confocal microscopy revealed no visible reduction of GLT1 immunoreactivity in relation to β-amyloid plaques in AD. These data suggest a subtle imbalance between GLT1, and GFAP and ALDH1L1 expression, with limited consequences in glutamate transport.


VGF Peptides in Cerebrospinal Fluid of Patients with Dementia with Lewy Bodies.

  • Inger van Steenoven‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

In a previous proteomic study, we identified the neurosecretory protein VGF (VGF) as a potential biomarker for dementia with Lewy bodies (DLB). Here, we extended the study of VGF by comparing levels in cerebrospinal fluid (CSF) from 44 DLB patients, 20 Alzheimer's disease (AD) patients, and 22 cognitively normal controls selected from the Amsterdam Dementia Cohort. CSF was analyzed using two orthogonal analytical methods: (1) In-house-developed quantitative ELISA and (2) selected reaction monitoring (SRM). We further addressed associations of VGF with other CSF biomarkers and cognition. VGF levels were lower in CSF from patients with DLB compared to either AD patients or controls. VGF was positively correlated with CSF tau and α-synuclein (0.55 < r < 0.75), but not with Aβ1-42. In DLB patients, low VGF levels were related to a more advanced cognitive decline at time of first presentation, whereas high levels of VGF were associated with steeper subsequent longitudinal cognitive decline. Hence, CSF VGF levels were lower in DLB compared to both AD and controls across different analytical methods. The strong associations with cognitive decline further points out VGF as a possible disease stage or prognostic marker for DLB.


Nicotinic receptor losses in dementia with Lewy bodies: comparisons with Alzheimer's disease.

  • R T Rei‎ et al.
  • Neurobiology of aging‎
  • 2000‎

We sought to delineate differences between alpha7 nicotinic acetylcholine receptor (nAChR) levels in Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and age matched controls, as well as the correlations between alpha7 or non-alpha7 nAChR levels and synaptophysin (Syn) or choline acetyltransferase (ChAT) in DLB. Mean bungarotoxin (Bgt) binding was 2.7 - 1.1 for controls, 2.4 +/- 1.0 for AD and 1.4 +/- 0.5 for DLB. There were significant decreases in Bgt binding for the DLB group compared to either controls or AD. Mean epibatidine (Epi) binding was 14.8 +/- 3.2 for controls, 6.3 +/- 3.2 for AD and 7.1 +/- 2.4 fmoles/mg protein for DLB. Epi binding in both the AD and DLB groups was significantly lower than in the controls. Although Syn loss correlated with the decrease in Epi binding in both diseases, declining ChAT levels correlated with Epi binding only in DLB. These data demonstrate a different pattern of nAChR loss in AD and DLB that may, in part, explain some of the differences in the two phenotypes.


Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.

  • David P Salmon‎ et al.
  • Neuropsychologia‎
  • 2015‎

Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease.


Sex differences in dementia with Lewy bodies: an imaging study of neurotransmission pathways.

  • Cecilia Boccalini‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2023‎

Dementia with Lewy bodies (DLB) is characterized by a wide clinical and biological heterogeneity, with sex differences reported in both clinical and pathologically confirmed DLB cohorts. No research evidence is available on sex differences regarding molecular neurotransmission. This study aimed to assess whether sex can influence neurotransmitter systems in patients with probable DLB (pDLB).


Severe hyposmia distinguishes neuropathologically confirmed dementia with Lewy bodies from Alzheimer's disease dementia.

  • Thomas G Beach‎ et al.
  • PloS one‎
  • 2020‎

Many subjects with neuropathologically-confirmed dementia with Lewy bodies (DLB) are never diagnosed during life, instead being categorized as Alzheimer's disease dementia (ADD) or unspecified dementia. Unrecognized DLB therefore is a critical impediment to clinical studies and treatment trials of both ADD and DLB. There are studies that suggest that olfactory function tests may be able to distinguish DLB from ADD, but few of these had neuropathological confirmation of diagnosis. We compared University of Pennsylvania Smell Identification Test (UPSIT) results in 257 subjects that went on to autopsy and neuropathological examination. Consensus clinicopathological diagnostic criteria were used to define ADD and DLB, as well as Parkinson's disease with dementia (PDD), with (PDD+AD) or without (PDD-AD) concurrent AD; a group with ADD and Lewy body disease (LBD) not meeting criteria for DLB (ADLB) and a clinically normal control group were also included. The subjects with DLB, PDD+AD and PDD-AD all had lower (one-way ANOVA p < 0.0001, pairwise Bonferroni p < 0.05) first and mean UPSIT scores than the ADD, ADLB or control groups. For DLB subjects with first and mean UPSIT scores less than 20 and 17, respectively, Firth logistic regression analysis, adjusted for age, gender and mean MMSE score, conferred statistically significant odds ratios of 17.5 and 18.0 for the diagnosis, vs ADD. For other group comparisons (PDD+AD and PDD-AD vs ADD) and UPSIT cutoffs of 17, the same analyses resulted in odds ratios ranging from 16.3 to 31.6 (p < 0.0001). To our knowledge, this is the largest study to date comparing olfactory function in subjects with neuropathologically-confirmed LBD and ADD. Olfactory function testing may be a convenient and inexpensive strategy for enriching dementia studies or clinical trials with DLB subjects, or conversely, reducing the inclusion of DLB subjects in ADD studies or trials.


Hospitalization in people with dementia with Lewy bodies: Frequency, duration, and cost implications.

  • Christoph Mueller‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2018‎

Increased hospitalization is a major component of dementia impact on individuals and cost, but has rarely been studied in dementia with Lewy bodies (DLB). Our aim was to describe the risk and duration of hospital admissions in patients with DLB, and compare these to those in Alzheimer's disease (AD) and the general population.


Translocator protein in late stage Alzheimer's disease and Dementia with Lewy bodies brains.

  • Jinbin Xu‎ et al.
  • Annals of clinical and translational neurology‎
  • 2019‎

Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB.


Ligand autoradiographical quantification of histamine H3 receptor in human dementia with Lewy bodies.

  • Natasha L Lethbridge‎ et al.
  • Pharmacological research‎
  • 2016‎

Dementia with Lewy bodies (DLB) is a serious age-dependent human neurodegenerative disease, with multiple debilitating symptoms, including dementia, psychosis and significant motor deficits, but with little or no effective treatments. This comparative ligand autoradiographical study has quantified histamine H3 receptors (H3R) in a series of major cortical and basal ganglia structures in human DLB and Alzheimer's (AD) post-mortem cases using the highly selective radioligand, [3H] GSK189254. In the main, the levels of H3 receptor were largely preserved in DLB cases when compared with aged-matched controls. However, we provide new evidence showing variable levels in the globus pallidus, and, moreover, raised levels of Pallidum H3 correlated with positive psychotic symptoms, in particular delusions and visual hallucinations, but not symptoms associated with depression. Furthermore, no correlation was detected for H3 receptor levels to MMSE or IUPRS symptom severity. This study suggests that H3R antagonists have scope for treating the psychotic symptomologies in DLB and other human brain disorders.


Relative survival in patients with dementia with Lewy bodies and Parkinson's disease dementia.

  • Victoria Larsson‎ et al.
  • PloS one‎
  • 2018‎

The understanding of survival in dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) is limited, as well as the impact of these diagnoses in an ageing co-morbid population.


Hippocampal volumes predict risk of dementia with Lewy bodies in mild cognitive impairment.

  • Kejal Kantarci‎ et al.
  • Neurology‎
  • 2016‎

To predict the risk of probable dementia with Lewy bodies (DLB) competing with Alzheimer disease (AD) dementia by hippocampal volume (HV) in patients with mild cognitive impairment (MCI) with impairments in amnestic or nonamnestic cognitive domains.


Functional Brain Connectivity Patterns Associated with Visual Hallucinations in Dementia with Lewy Bodies.

  • Stefania Pezzoli‎ et al.
  • Journal of Alzheimer's disease reports‎
  • 2021‎

The presence of recurrent, complex visual hallucinations (VH) is among the core clinical features of dementia with Lewy bodies (DLB). It has been proposed that VH arise from a disrupted organization of functional brain networks. However, studies are still limited, especially investigating the resting-state functional brain features underpinning VH in patients with dementia.


11C-UCB-J synaptic PET and multimodal imaging in dementia with Lewy bodies.

  • Nicolas Nicastro‎ et al.
  • European journal of hybrid imaging‎
  • 2020‎

Dementia with Lewy bodies (DLB) is a common cause of dementia, but atrophy is mild compared to Alzheimer's disease. We propose that DLB is associated instead with severe synaptic loss, and we test this hypothesis in vivo using positron emission tomography (PET) imaging of 11C-UCB-J, a ligand for presynaptic vesicle protein 2A (SV2A), a vesicle membrane protein ubiquitously expressed in synapses.


Genetics Contributes to Concomitant Pathology and Clinical Presentation in Dementia with Lewy Bodies.

  • Sven J van der Lee‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2021‎

Dementia with Lewy bodies (DLB) is a complex, progressive neurodegenerative disease with considerable phenotypic, pathological, and genetic heterogeneity.


Divergent brain functional network alterations in dementia with Lewy bodies and Alzheimer's disease.

  • Luis R Peraza‎ et al.
  • Neurobiology of aging‎
  • 2015‎

The clinical phenotype of dementia with Lewy bodies (DLB) is different from Alzheimer's disease (AD), suggesting a divergence between these diseases in terms of brain network organization. To fully understand this, we studied functional networks from resting-state functional magnetic resonance imaging in cognitively matched DLB and AD patients. The DLB group demonstrated a generalized lower synchronization compared with the AD and healthy controls, and this was more severe for edges connecting distant brain regions. Global network measures were significantly different between DLB and AD. For instance, AD showed lower small-worldness than healthy controls, while DLB showed higher small-worldness (AD < controls < DLB), and this was also the case for global efficiency (DLB > controls > AD) and clustering coefficient (DLB < controls < AD). Differences were also found for nodal measures at brain regions associated with each disease. Finally, we found significant associations between network performance measures and global cognitive impairment and severity of cognitive fluctuations in DLB. These results show network divergences between DLB and AD which appear to reflect their neuropathological differences.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: