Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 8,480 papers

Region-Specific Methylation Profiling in Acute Myeloid Leukemia.

  • Agnieszka Cecotka‎ et al.
  • Interdisciplinary sciences, computational life sciences‎
  • 2018‎

Alteration of DNA methylation level in cancer diseases leads to deregulation of gene expression-silencing of tumor suppressor genes and enhancing of protooncogenes. There are several tools devoted to the problem of identification of CpG sites' demethylation but majority of them focuses on single site level and does not allow for quantification of region methylation changes. The aim was to create an adaptive algorithm supporting detection of differentially methylated CpG sites and genomic regions specific for acute myeloid leukemia. Knowledge on AML methylation fingerprint helps in better understanding the epigenetics of leukemogenesis. Proposed algorithm is data driven and does not use predefined quantification thresholds. Gaussian mixture modeling supports classification of CpG sites to several levels of demethylation. p value integration allows for translation from single site demethylation to the demethylation of gene promoter and body regions. Methylation profiles of healthy controls and AML patients were examined (GEO:GSE63409). The differences in whole genome methylation profiles were observed. The methylation profile differs significantly among genomic regions. The lowest methylation level was observed for promoter regions, while sites from intergenic regions were by average higher methylated. The observed number of AML related down methylated sites has not substantially exceeded the expected number by chance. Intergenic regions were characterized by the highest percentage of AML up methylated sites. Methylation enhancement/diminution is the most frequent for intergenic region while methylation compensation (positive or negative) is specific for promoter regions. Functional analysis performed for AML down methylated or extreme high up methylated genes showed strong connection to the leukemic processes.


Combined venetoclax and alvocidib in acute myeloid leukemia.

  • James Bogenberger‎ et al.
  • Oncotarget‎
  • 2017‎

More effective treatment options for elderly acute myeloid leukemia (AML) patients are needed as only 25-50% of patients respond to standard-of-care therapies, response duration is typically short, and disease progression is inevitable even with some novel therapies and ongoing clinical trials. Anti-apoptotic BCL-2 family inhibitors, such as venetoclax, are promising therapies for AML. Nonetheless, resistance is emerging. We demonstrate that venetoclax combined with cyclin-dependent kinase (CDK) inhibitor alvocidib is potently synergistic in venetoclax-sensitive and -resistant AML models in vitro, ex vivo and in vivo. Alvocidib decreased MCL-1, and/or increased pro-apoptotic proteins such as BIM or NOXA, often synergistically with venetoclax. Over-expression of BCL-XL diminished synergy, while knock-down of BIM almost entirely abrogated synergy, demonstrating that the synergistic interaction between alvocidib and venetoclax is primarily dependent on intrinsic apoptosis. CDK9 inhibition predominantly mediated venetoclax sensitization, while CDK4/6 inhibition with palbociclib did not potentiate venetoclax activity. Combined, venetoclax and alvocidib modulate the balance of BCL-2 family proteins through complementary, yet variable mechanisms favoring apoptosis, highlighting this combination as a promising therapy for AML or high-risk MDS with the capacity to overcome intrinsic apoptosis mechanisms of resistance. These results support clinical testing of combined venetoclax and alvocidib for the treatment of AML and advanced MDS.


Clonal hematopoiesis and risk of acute myeloid leukemia.

  • Andrew L Young‎ et al.
  • Haematologica‎
  • 2019‎

Nearly all adults harbor acute myeloid leukemia (AML)-related clonal hematopoietic mutations at a variant allele fraction (VAF) of ≥0.0001, yet relatively few develop hematologic malignancies. We conducted a nested analysis in the Nurses' Health Study and Health Professionals Follow-Up Study blood subcohorts, with up to 22 years of follow up to investigate associations of clonal mutations of ≥0.0001 allele frequency with future risk of AML. We identified 35 cases with AML that had pre-diagnosis peripheral blood samples and matched two controls without history of cancer per case by sex, age, and ethnicity. We conducted blinded error-corrected sequencing on all study samples and assessed variant-associated risk using conditional logistic regression. We detected AML-associated mutations in 97% of all participants (598 mutations, 5.8/person). Individuals with mutations ≥0.01 variant allele fraction had a significantly increased AML risk (OR 5.4, 95%CI: 1.8-16.6), as did individuals with higher-frequency clones and those with DNMT3A R882H/C mutations. The risk of lower-frequency clones was less clear. In the 11 case-control sets with samples banked ten years apart, clonal mutations rarely expanded over time. Our findings are consistent with published evidence that detection of clonal mutations ≥0.01 VAF identifies individuals at increased risk for AML. Further study of larger populations, mutations co-occurring within the same pre-leukemic clone and other risk factors (lifestyle, epigenetics, etc.), are still needed to fully elucidate the risk conferred by low-frequency clonal hematopoiesis in asymptomatic adults.


Proteomic and phosphoproteomic landscapes of acute myeloid leukemia.

  • Michael H Kramer‎ et al.
  • Blood‎
  • 2022‎

We have developed a deep-scale proteome and phosphoproteome database from 44 representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6 healthy bone marrow-derived controls. After confirming data quality, we orthogonally validated several previously undescribed features of AML revealed by the proteomic data. We identified examples of posttranscriptionally regulated proteins both globally (ie, in all AML samples) and also in patients with recurrent AML driver mutations. For example, samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate-dependent histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified several nuclear importins with posttranscriptionally increased protein abundance and showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not healthy CD34+ stem/progenitor cells) that could represent novel targets for immunologic therapies and confirmed these targets via flow cytometry. Finally, we detected nearly 30 000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related signaling proteins. PML-RARA-initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a foundation for further investigations of protein dysregulation in AML pathogenesis.


Acute myeloid leukemia xenograft success prediction: Saving time.

  • Emmanuel Griessinger‎ et al.
  • Experimental hematology‎
  • 2018‎

Xenograft assay allows functional analysis of leukemia-initiating cells of acute myeloid leukemia primary samples. However, 40% of samples derived from patients with better outcomes fail to engraft in immunodeficient mouse recipients when conventional protocols are followed. At diagnosis, the engraftment of intermediate-risk group samples cannot be anticipated. In this study, we decided to further explore the reasons for xenograft success and failure. No differences in extracellular phenotype, apoptosis, or cell cycle profile could distinguish samples that engraft (engrafter [E]) from samples that do not engraft (nonengrafter [NE]) in NSG mice. In addition, ex vivo long-term culture assay revealed, after 5 weeks, a lower content of leukemic-LTC-initiating cells in the NE samples associated with a lower expansion rate capacity. One-week co-cultures with mesenchymal or osteoblastic or endothelial cells did not influence the proliferation rate, suggesting that E and NE samples are genuinely rapidly or slowly expanding independent of external cue. Engraftment success for some NE samples was consistently observed in recipient mice analyzed 6 months later than the conventional 3-month period. Eventually we implemented a flow cytometry-based assay, which allowed us to predict, in 1 week, the fast or delayed engraftment potential of a noncharacterized acute myeloid leukemia sample. This approach will be especially useful in selecting intermediate-risk-group patient samples and restricting the experimental duration to a 3-month period and, eventually, in reducing the number of animals and the cost and effort of unnecessary xenograft failures.


Allelic imbalances in radiation-associated acute myeloid leukemia.

  • Sergiy V Klymenko‎ et al.
  • Genes‎
  • 2011‎

Acute myeloid leukemia (AML) can develop as a secondary malignancy following radiotherapy, but also following low-dose environmental or occupational radiation exposure. Therapy-related AML frequently carries deletions of chromosome 5q and/or 7, but for low-dose exposure associated AML this has not been described. For the present study we performed genome-wide screens for loss-of-heterozygosity (LOH) in a set of 19 AML cases that developed after radiation-exposure following the Chernobyl accident. Using Affymetrix SNP arrays we found large regions of LOH in 16 of the cases. Eight cases (42%) demonstrated LOH at 5q and/or 7, which is a known marker of complex karyotypic changes and poor prognosis. In accordance with literature data, the overall survival for these patients was significantly shorter as compared to patients without this alteration (P=0,014). We could show here for the first time that exposure to low-dose ionizing radiation induces AML with molecular alterations similar to those seen in therapy-related cases.


Characteristics of DNMT3A mutations in acute myeloid leukemia.

  • Dong Jin Park‎ et al.
  • Blood research‎
  • 2020‎

DNMT3A mutations occur in approximately 20% of AML cases and are associated with changes in DNA methylation. CDKN2B plays an important role in the regulation of hematopoietic progenitor cells and DNMT3A mutation is associated with CDKN2B promoter methylation. We analyzed the characteristics of DNMT3A mutations including their clinical significance in AML and their influence on promoter methylation and CDKN2B expression.


CD9, a potential leukemia stem cell marker, regulates drug resistance and leukemia development in acute myeloid leukemia.

  • Yongliang Liu‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Leukemia stem cells (LSCs) are responsible for the initiation, progression, and relapse of acute myeloid leukemia (AML). Therefore, a therapeutic strategy targeting LSCs is a potential approach to eradicate AML. In this study, we aimed to identify LSC-specific surface markers and uncover the underlying mechanism of AML LSCs.


Targeting mitochondrial RNA polymerase in acute myeloid leukemia.

  • Fernando N Bralha‎ et al.
  • Oncotarget‎
  • 2015‎

Acute myeloid leukemia (AML) cells have high oxidative phosphorylation and mitochondrial mass and low respiratory chain spare reserve capacity. We reasoned that targeting the mitochondrial RNA polymerase (POLRMT), which indirectly controls oxidative phosphorylation, represents a therapeutic strategy for AML. POLRMT-knockdown OCI-AML2 cells exhibited decreased mitochondrial gene expression, decreased levels of assembled complex I, decreased levels of mitochondrially-encoded Cox-II and decreased oxidative phosphorylation. POLRMT-knockdown cells exhibited an increase in complex II of the electron transport chain, a complex comprised entirely of subunits encoded by nuclear genes, and POLRMT-knockdown cells were resistant to a complex II inhibitor theonyltrifluoroacetone. POLRMT-knockdown cells showed a prominent increase in cell death. Treatment of OCI-AML2 cells with 10-50 µM 2-C-methyladenosine (2-CM), a chain terminator of mitochondrial transcription, reduced mitochondrial gene expression and oxidative phosphorylation, and increased cell death in a concentration-dependent manner. Treatment of normal human hematopoietic cells with 2-CM at concentrations of up to 100 µMdid not alter clonogenic growth, suggesting a therapeutic window. In an OCI-AML2 xenograft model, treatment with 2-CM (70 mg/kg, i.p., daily) decreased the volume and mass of tumours to half that of vehicle controls. 2-CM did not cause toxicity to major organs. Overall, our results in a preclinical model contribute to the functional validation of the utility of targeting the mitochondrial RNA polymerase as a therapeutic strategy for AML.


DNMT3A mutations in Chinese childhood acute myeloid leukemia.

  • Weijing Li‎ et al.
  • Medicine‎
  • 2017‎

DNA methyltransferase 3A (DNMT3A) mutations have been found in approximately 20% of adult acute myeloid leukemia (AML) patients and in 0% to 1.4% of children with AML, and the hotspots of mutations are mainly located in the catalytic methyltransferase domain, hereinto, mutation R882 accounts for 60%. Although the negative effect of DNMT3A on treatment outcome is well known, the prognostic significance of other DNMT3A mutations in AML is still unclear. Here, we tried to determine the incidence and prognostic significance of DNMT3A mutations in a large cohort in Chinese childhood AML.


HDAC2-dependent miRNA signature in acute myeloid leukemia.

  • Mariarosaria Conte‎ et al.
  • FEBS letters‎
  • 2019‎

Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting-edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2-mediated miRNA regulatory network in U937 leukemic cells. Following a comparative miRNA profiling analysis in genetically and enzymatically HDAC2-downregulated AML cells, we identified miR-96-5p and miR-92a-3p as potential regulators in AML etiopathology by targeting defined genes. Our findings support the potentially beneficial role of alternative physiopathological interventions.


Advances in targeted therapy for acute myeloid leukemia.

  • Jifeng Yu‎ et al.
  • Biomarker research‎
  • 2020‎

Acute myeloid leukemia (AML) is a clonal malignancy characterized by genetic heterogeneity due to recurrent gene mutations. Treatment with cytotoxic chemotherapy has been the standard of care for more than half of a century. Although much progress has been made toward improving treatment related mortality rate in the past few decades, long term overall survival has stagnated. Exciting developments of gene mutation-targeted therapeutic agents are now changing the landscape in AML treatment. New agents offer more clinical options for patients and also confer a more promising outcome. Since Midostaurin, a FLT3 inhibitor, was first approved by US FDA in 2017 as the first gene mutation-targeted therapeutic agent, an array of new gene mutation-targeted agents are now available for AML treatment. In this review, we will summarize the recent advances in gene mutation-targeted therapies for patients with AML.


Compromised anti-tumor-immune features of myeloid cell components in chronic myeloid leukemia patients.

  • Ibuki Harada‎ et al.
  • Scientific reports‎
  • 2021‎

Chronic myeloid leukemia (CML) is a form of myeloproliferative neoplasm caused by the oncogenic tyrosine kinase BCR-ABL. Although tyrosine kinase inhibitors have dramatically improved the prognosis of patients with CML, several problems such as resistance and recurrence still exist. Immunological control may contribute to solving these problems, and it is important to understand why CML patients fail to spontaneously develop anti-tumor immunity. Here, we show that differentiation of conventional dendritic cells (cDCs), which are vital for anti-tumor immunity, is restricted from an early stage of hematopoiesis in CML. In addition, we found that monocytes and basophils, which are increased in CML patients, express high levels of PD-L1, an immune checkpoint molecule that inhibits T cell responses. Moreover, RNA-sequencing analysis revealed that basophils express genes related to poor prognosis in CML. Our data suggest that BCR-ABL not only disrupts the "accelerator" (i.e., cDCs) but also applies the "brake" (i.e., monocytes and basophils) of anti-tumor immunity, compromising the defense against CML cells.


Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia.

  • Tim C P Somervaille‎ et al.
  • Cancer cell‎
  • 2006‎

Using a mouse model of human acute myeloid leukemia (AML) induced by the MLL-AF9 oncogene, we demonstrate that colony-forming cells (CFCs) in the bone marrow and spleen of leukemic mice are also leukemia stem cells (LSCs). These self-renewing cells (1) are frequent, accounting for 25%-30% of myeloid lineage cells at late-stage disease; (2) generate a phenotypic, morphologic, and functional leukemia cell hierarchy; (3) express mature myeloid lineage-specific antigens; and (4) exhibit altered microenvironmental interactions by comparison with the oncogene-immortalized CFCs that initiated the disease. Therefore, the LSCs responsible for sustaining, expanding, and regenerating MLL-AF9 AML are downstream myeloid lineage cells, which have acquired an aberrant Hox-associated self-renewal program as well as other biologic features of hematopoietic stem cells.


Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells.

  • Nobuaki Fukushima‎ et al.
  • Cancer science‎
  • 2016‎

Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF-04449913 (PF-913) is a selective, small-molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof-of-concept and mechanism of action of PF-913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signaling pathway in AML cells, and evaluated the in vitro and in vivo effects of the Smoothened inhibitor PF-913. In primary AML cells, activation of the Hedgehog signaling pathway was more pronounced in CD34+ cells than CD34- cells. In vitro treatment with PF-913 induced a decrease in the quiescent cell population accompanied by minimal cell death. In vivo treatment with PF-913 attenuated the leukemia-initiation potential of AML cells in a serial transplantation mouse model, while limiting reduction of tumor burden in a primary xenotransplant system. Comprehensive gene set enrichment analysis revealed that PF-913 modulated self-renewal signatures and cell cycle progression. Furthermore, PF-913 sensitized AML cells to cytosine arabinoside, and abrogated resistance to cytosine arabinoside in AML cells cocultured with HS-5 stromal cells. These findings imply that pharmacologic inhibition of Hedgehog signaling attenuates the leukemia-initiation potential, and also enhanced AML therapy by sensitizing dormant leukemia stem cells to chemotherapy and overcoming resistance in the bone marrow microenvironment.


Evi1 defines leukemia-initiating capacity and tyrosine kinase inhibitor resistance in chronic myeloid leukemia.

  • T Sato‎ et al.
  • Oncogene‎
  • 2014‎

Relapse of chronic myeloid leukemia (CML) is triggered by stem cells with a reconstituting capacity similar to that of hematopoietic stem cells (HSCs) and CML stem cells are a source of resistance in drug therapy with tyrosine kinase inhibitors (TKIs). Ecotropic viral integration site 1 (EVI1), a key transcription factor in HSC regulation, is known to predict poor outcomes in myeloid malignancies, however, incapability of prospective isolation of EVI1-high leukemic cells precludes the functional evaluation of intraindividual EVI1-high cells. Introduction of CML into Evi1-internal ribosomal entry site (IRES)-green fluorescent protein (GFP) knock-in mice, a versatile HSC-reporter strain, enables us to separate Evi1-high CML cells from the individual. Evi1-IRES-GFP allele models of CML in chronic phase (CML-CP), by retroviral overexpression of BCR-ABL and by crossing BCR-ABL transgenic mice, revealed that Evi1 is predominantly enriched in the stem cell fraction and associated with an enhanced proliferative as well as a leukemia-initiating capacity and that Evi1-high CML-CP cells exhibit resistance to TKIs. Overexpressing BCR-ABL and NUP98-HOXA9 in Evi1-IRES-GFP knock-in mice to model CML in blast crisis (CML-BC), in which Evi1-high cells turned to be a major population as opposed to a minor population in CML-CP models, showed that Evi1-high CML-BC cells have a greater potential to recapitulate the disease and appear resistant to TKIs. Furthermore, given that Evi1 heterozygosity ameliorates CML-CP and CML-BC development and that the combination of Evi1 and BCR-ABL causes acute myeloid leukemia resembling CML-BC, Evi1 could regulate CML development as a potent driver. In addition, in human CML-CP cases, we show that EVI1 is highly expressed in stem cell-enriched CD34+CD38-CD90+ fraction at single-cell level. This is the first report to clarify directly that Evi1-high leukemic cells themselves possess the superior potential to Evi1-low cells in oncogenic self-renewal, which highlights the role of Evi1 as a valuable and a functional marker of CML stem cells.


Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function.

  • Meifang Xiao‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34(+) stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34(+) cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34(+) stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment.


Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia.

  • Yaoyu Chen‎ et al.
  • Nature genetics‎
  • 2009‎

Targeting of cancer stem cells is believed to be essential for curative therapy of cancers, but supporting evidence is limited. Few selective target genes in cancer stem cells have been identified. Here we identify the arachidonate 5-lipoxygenase (5-LO) gene (Alox5) as a critical regulator for leukemia stem cells (LSCs) in BCR-ABL-induced chronic myeloid leukemia (CML). In the absence of Alox5, BCR-ABL failed to induce CML in mice. This Alox5 deficiency caused impairment of the function of LSCs but not normal hematopoietic stem cells (HSCs) through affecting differentiation, cell division and survival of long-term LSCs (LT-LSCs), consequently causing a depletion of LSCs and a failure of CML development. Treatment of CML mice with a 5-LO inhibitor also impaired the function of LSCs similarly by affecting LT-LSCs, and prolonged survival. These results demonstrate that a specific target gene can be found in cancer stem cells and its inhibition can completely inhibit the function of these stem cells.


Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia.

  • Nicolas Goardon‎ et al.
  • Cancer cell‎
  • 2011‎

The relationships between normal and leukemic stem/progenitor cells are unclear. We show that in ∼80% of primary human CD34+ acute myeloid leukemia (AML), two expanded populations with hemopoietic progenitor immunophenotype coexist in most patients. Both populations have leukemic stem cell (LSC) activity and are hierarchically ordered; one LSC population gives rise to the other. Global gene expression profiling shows the LSC populations are molecularly distinct and resemble normal progenitors but not stem cells. The more mature LSC population most closely mirrors normal granulocyte-macrophage progenitors (GMP) and the immature LSC population a previously uncharacterized progenitor functionally similar to lymphoid-primed multipotential progenitors (LMPPs). This suggests that in most cases primary CD34+ AML is a progenitor disease where LSCs acquire abnormal self-renewal potential.


Allogeneic hematopoietic cell transplantation for adult patients with treatment-related acute myeloid leukemia during first remission: Comparable to de novo acute myeloid leukemia.

  • Fei-Fei Tang‎ et al.
  • Leukemia research‎
  • 2016‎

Therapy-related acute myeloid leukemia (T-AML) is associated with poor prognosis after conventional therapy. Allogeneic hematopoietic cell transplantation (allo-HCT) has been proposed as a treatment for T-AML; however, data comparing outcomes of transplants for patients with de novo AML and T-AML are limited. Sixteen adult patients with T-AML during first complete remission after malignant disease received allo-HCT at the Peking University Institute of Hematology between January 1, 2006 and December 31, 2014. Eighty patients with de novo AML were selected using the case-pair method. The 3-year overall survival and leukemia-free survival for T-AML versus de novo AML patients were 66% vs. 79% (P=0.14) and 64% vs. 77% (P=0.13), respectively. The 3-year cumulative non-relapse mortality rates for T-AML versus de novo AML patients were 13% vs. 9% (P=0.47), respectively; the relapse rates were 20% vs. 13% (P=0.25), respectively. Our results suggest that the prognosis of T-AML is comparable to that of de novo AML after transplantation. Although T-AML shows poorer prognosis than de novo AML after conventional therapies, allo-HCT can markedly improve the prognosis of T-AML.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: