Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 2,434 papers

Dietary phosphorus deficiency impaired growth, intestinal digestion and absorption function of meat ducks.

  • Huimin Xu‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2019‎

An experiment was conducted to investigate the effects of dietary non-phytate phosphorus (nPP) deficiency on intestinal pH value, digestive enzyme activity, morphology, nutrient utilization, and gene expression of NaPi-IIb in meat ducks from 1 to 21 d of age.


The effect of dehydroepiandrosterone administration on intestinal calcium absorption in ovariectomized female rats.

  • Satoshi Hattori‎ et al.
  • Physical activity and nutrition‎
  • 2020‎

Dehydroepiandrosterone (DHEA) administration reportedly recovers osteoporosis, a bone disorder associated with bone deficiency in postmenopausal women. However, the physiological mechanism of DHEA in osteoporosis remains elusive, especially in terms of intestinal calcium absorption. Therefore, we investigated the effect of DHEA administration on calcium absorption in ovariectomized (OVX) female rats using an estrogen receptor antagonist.


Calcium-sensing receptor regulates intestinal dipeptide absorption via Ca2+ signaling and IKCa activation.

  • Jingyu Xu‎ et al.
  • Physiological reports‎
  • 2020‎

Although absorption of di- and tripeptides into intestinal epithelial cells occurs via the peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1)), the detailed regulatory mechanisms are not fully understood. We examined: (a) whether dipeptide absorption in villous enterocytes is associated with a rise in cytosolic Ca2+ ([Ca2+ ]cyt ), (b) whether the calcium sensing receptor (CaSR) is involved in dipeptide-elicited [Ca2+ ]cyt signaling, and (c) what potential consequences of [Ca2+ ]cyt signaling may enhance enterocyte dipeptide absorption. Dipeptide Gly-Sar and CaSR agonist spermine markedly raised [Ca2+ ]cyt in villous enterocytes, which was abolished by NPS-2143, a selective CaSR antagonist and U73122, an phospholipase C (PLC) inhibitor. Apical application of Gly-Sar induced a jejunal short-circuit current (Isc), which was reduced by NPS-2143. CaSR expression was identified in the lamina propria and on the basal enterocyte membrane of mouse jejunal mucosa in both WT and Slc15a1-/- animals, but Gly-Sar-induced [Ca2+ ]cyt signaling was significantly decreased in Slc15a1-/- villi. Clotrimazole and TRM-34, two selective blockers of the intermediate conductance Ca2+ -activated K+ channel (IKCa ), but not iberiotoxin, a selective blocker of the large-conductance K+ channel (BKCa ) and apamin, a selective blocker of the small-conductance K+ channel (SKCa ), significantly inhibited Gly-Sar-induced Isc in native tissues. We reveal a novel CaSR-PLC-Ca2+ -IKCa pathway in the regulation of small intestinal dipeptide absorption, which may be exploited as a target for future drug development in human nutritional disorders.


Evaluation of Intestinal Absorption Mechanism and Pharmacokinetics of Curcumin-Loaded Galactosylated Albumin Nanoparticles.

  • Yike Huang‎ et al.
  • International journal of nanomedicine‎
  • 2019‎

Most of the oral drugs have the properties of weak intestinal absorption and low bioavailability, which leads to little treatment to diseases. By nanotechnology, these drugs can be efficiently delivered to pass biological barriers and promote the cell uptake ability for the enhancement of the oral bioavailability.


The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1.

  • Pei-Shan Li‎ et al.
  • Nature medicine‎
  • 2014‎

Hypercholesterolemia, typically due to excessive cholesterol uptake, is a major risk factor for cardiovascular disease, which is responsible for ∼50% of all deaths in developed societies. Although it has been shown that intestinal cholesterol absorption is mediated by vesicular endocytosis of the Niemann-Pick C1-like 1 (NPC1L1) protein, the mechanism of sterol-stimulated NPC1L1 internalization is still mysterious. Here, we identified an endocytic peptide signal, YVNXXF (where X stands for any amino acid), in the cytoplasmic C-terminal tail of NPC1L1. Cholesterol binding on the N-terminal domain of NPC1L1 released the YVNXXF-containing region of NPC1L1 from association with the plasma membrane and enabled Numb binding. We also found that Numb, a clathrin adaptor, specifically recognized this motif and recruited clathrin for internalization. Disrupting the NPC1L1-Numb interaction decreased cholesterol uptake. Ablation of Numb in mouse intestine significantly reduced dietary cholesterol absorption and plasma cholesterol level. Together, these data show that Numb is a pivotal protein for intestinal cholesterol absorption and may provide a therapeutic target for hypercholesterolemia.


A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption.

  • Ying-Yu Zhang‎ et al.
  • Science (New York, N.Y.)‎
  • 2018‎

A high concentration of low-density lipoprotein cholesterol (LDL-C) is a major risk factor for cardiovascular disease. Although LDL-C levels vary among humans and are heritable, the genetic factors affecting LDL-C are not fully characterized. We identified a rare frameshift variant in the LIMA1 (also known as EPLIN or SREBP3) gene from a Chinese family of Kazakh ethnicity with inherited low LDL-C and reduced cholesterol absorption. In a mouse model, LIMA1 was mainly expressed in the small intestine and localized on the brush border membrane. LIMA1 bridged NPC1L1, an essential protein for cholesterol absorption, to a transportation complex containing myosin Vb and facilitated cholesterol uptake. Similar to the human phenotype, Lima1-deficient mice displayed reduced cholesterol absorption and were resistant to diet-induced hypercholesterolemia. Through our study of both mice and humans, we identify LIMA1 as a key protein regulating intestinal cholesterol absorption.


Inhibition of α-Glucosidase, Intestinal Glucose Absorption, and Antidiabetic Properties by Caralluma europaea.

  • Hayat Ouassou‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Many medicinal plants around the world are used for therapeutic purposes against several diseases, including diabetes mellitus. Due to their composition of natural substances that are effective and do not represent side effects for users, unlike synthetic drugs, in this study, we investigated the inhibitory effect of Caralluma europaea (CE) on α-glucosidase activity in vitro; then the kinetics of the enzyme were studied with increasing concentrations of sucrose in order to determine the inhibition type of the enzyme. In addition, this effect of Caralluma europaea (CE) was confirmed in vivo using rats as an experimental animal model. Among the five fractions of CE, only the ethyl acetate fraction of C. europaea (EACe) induced a significant inhibition of α-glucosidase and its inhibition mode was competitive. The in vivo studies were conducted on mice and rats using glucose and sucrose as a substrate, respectively, to determine the oral glucose tolerance test (OGTT). The results obtained showed that the EACe and the aqueous extract of C. europaea (AECe) have significantly reduced the postprandial hyperglycemia after sucrose and glucose loading in normal and diabetic rats. AECe, also, significantly decreased intestinal glucose absorption, in situ. The results obtained showed that Caralluma europaea has a significant antihyperglycemic activity, which could be due to the inhibition of α-glucosidase activity and enteric absorption of glucose.


Lysophosphatidylcholine for efficient intestinal lipid absorption and lipoprotein secretion in caco-2 cells.

  • Takanari Nakano‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2009‎

Phosphatidylcholine (PC) and its hydrolysates are considered to stimulate intestinal lipid absorption, however, their exact effects on lipoproteins and apolipoprotein (apo) metabolism remain ambiguous. This study aimed to further differentiate the effects of them using fully differentiated enterocyte-like Caco-2 cells. Lipid micelles (oleic acid 0.6, cholesterol 0.05, monooleylglycerol 0.2, taurocholate 2 in mmol/l) with or without choline, PC, and lysoPC (0.2 mmol/l each) were applied apically to Caco-2 cells. (3)H-oleic acid and (14)C-cholesterol were added to the micelles when necessary. Secreted lipoproteins were analyzed by a HPLC method. LysoPC had the most potent promoting effect on lipid uptake, and lipoprotein and apolipoprotein B-48 secretion among the molecules tested. LysoPC doubled the output of cholesterol and triglyceride as the lipoprotein component, but PC did not. On the other hand, PC only increased the secretion of apoA-IV in the presence of lipid micelles. These findings confirm that the alteration of PC by PLA(2) hydrolysis is intrinsically involved in the intestinal lipid absorption process and suggest that PC and its hydrolysis are coordinately associated with not only lipid absorption efficiency but also lipoprotein output and metabolism.


Chylomicrons promote intestinal absorption and systemic dissemination of dietary antigen (ovalbumin) in mice.

  • Yuehui Wang‎ et al.
  • PloS one‎
  • 2009‎

A small fraction of dietary protein survives enzymatic degradation and is absorbed in potentially antigenic form. This can trigger inflammatory responses in patients with celiac disease or food allergies, but typically induces systemic immunological tolerance (oral tolerance). At present it is not clear how dietary antigens are absorbed. Most food staples, including those with common antigens such as peanuts, eggs, and milk, contain long-chain triglycerides (LCT), which stimulate mesenteric lymph flux and postprandial transport of chylomicrons through mesenteric lymph nodes (MLN) and blood. Most dietary antigens, like ovalbumin (OVA), are emulsifiers, predicting affinity for chylomicrons. We hypothesized that chylomicron formation promotes intestinal absorption and systemic dissemination of dietary antigens.


TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival.

  • Lorenz Mittermeier‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Zn2+, Mg2+, and Ca2+ are essential minerals required for a plethora of metabolic processes and signaling pathways. Different categories of cation-selective channels and transporters are therefore required to tightly control the cellular levels of individual metals in a cell-specific manner. However, the mechanisms responsible for the organismal balance of these essential minerals are poorly understood. Herein, we identify a central and indispensable role of the channel-kinase TRPM7 for organismal mineral homeostasis. The function of TRPM7 was assessed by single-channel analysis of TRPM7, phenotyping of TRPM7-deficient cells in conjunction with metabolic profiling of mice carrying kidney- and intestine-restricted null mutations in Trpm7 and animals with a global "kinase-dead" point mutation in the gene. The TRPM7 channel reconstituted in lipid bilayers displayed a similar permeability to Zn2+ and Mg2+ Consistently, we found that endogenous TRPM7 regulates the total content of Zn2+ and Mg2+ in cultured cells. Unexpectedly, genetic inactivation of intestinal rather than kidney TRPM7 caused profound deficiencies specifically of Zn2+, Mg2+, and Ca2+ at the organismal level, a scenario incompatible with early postnatal growth and survival. In contrast, global ablation of TRPM7 kinase activity did not affect mineral homeostasis, reinforcing the importance of the channel activity of TRPM7. Finally, dietary Zn2+ and Mg2+ fortifications significantly extended the survival of offspring lacking intestinal TRPM7. Hence, the organismal balance of divalent cations critically relies on one common gatekeeper, the intestinal TRPM7 channel.


Intestinal Absorption Profile of Three Polygala Oligosaccharide Esters in Polygalae Radix and the Effects of Other Components in Polygalae Radix on Their Absorption.

  • YinYing Ba‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2019‎

Oligosaccharide esters, which are among the main active components of Polygalae Radix (PR), demonstrate significant pharmacological activities in the human nervous system. In our previous research, some other constituents in PR were able to improve the bioavailability of oligosaccharide esters such as sibiricose A5 (SA5), sibiricose A6 (SA6), and 3,6'-disinapoyl sucrose (DISS), but the related components and their underlying mechanisms remain unknown. The present study aimed to investigate the intestinal absorptive profile of SA5, SA6, and DISS and the absorptive behavior influenced by the coadministration of polygalaxanthone III and total saponins of PR (TS) using an in vitro everted rat gut sac model, along with the possible mechanisms that may influence absorption. The results showed that TS could significantly enhance the absorption of SA5, SA6, and DISS monomers. Verapamil, a P-glycoprotein inhibitor, was able to elevate the absorption of SA5 and SA6, and an absorption experiment using Rho123 led us to conclude that TS influenced the absorption of SA5 and SA6 in a manner similar to that of a P-glycoprotein inhibitor. Sodium caprate, a paracellular absorption enhancer, was found to increase the absorption of SA5, SA6, and DISS. Results showed that the absorption mechanisms of SA5 and SA6 may combine active transport with paracellular passive penetration, while DISS's absorption was dominated by paracellular passive penetration. However, the relationship between polygala saponins and the absorption of SA5, SA6, and DISS by paracellular passive penetration remain to be examined. This is the direction of our future research.


BCS Class IV Oral Drugs and Absorption Windows: Regional-Dependent Intestinal Permeability of Furosemide.

  • Milica Markovic‎ et al.
  • Pharmaceutics‎
  • 2020‎

Biopharmaceutical classification system (BCS) class IV drugs (low-solubility low-permeability) are generally poor drug candidates, yet, ~5% of oral drugs on the market belong to this class. While solubility is often predictable, intestinal permeability is rather complicated and highly dependent on many biochemical/physiological parameters. In this work, we investigated the solubility/permeability of BCS class IV drug, furosemide, considering the complexity of the entire small intestine (SI). Furosemide solubility, physicochemical properties, and intestinal permeability were thoroughly investigated in-vitro and in-vivo throughout the SI. In addition, advanced in-silico simulations (GastroPlus®) were used to elucidate furosemide regional-dependent absorption pattern. Metoprolol was used as the low/high permeability class boundary. Furosemide was found to be a low-solubility compound. Log D of furosemide at the three pH values 6.5, 7.0, and 7.5 (representing the conditions throughout the SI) showed a downward trend. Similarly, segmental-dependent in-vivo intestinal permeability was revealed; as the intestinal region becomes progressively distal, and the pH gradually increases, the permeability of furosemide significantly decreased. The opposite trend was evident for metoprolol. Theoretical physicochemical analysis based on ionization, pKa, and partitioning predicted the same trend and confirmed the experimental results. Computational simulations clearly showed the effect of furosemide's regional-dependent permeability on its absorption, as well as the critical role of the drug's absorption window on the overall bioavailability. The data reveals the absorption window of furosemide in the proximal SI, allowing adequate absorption and consequent effect, despite its class IV characteristics. Nevertheless, this absorption window so early on in the SI rules out the suitability of controlled-release furosemide formulations, as confirmed by the in-silico results. The potential link between segmental-dependent intestinal permeability and adequate oral absorption of BCS Class IV drugs may aid to develop challenging drugs as successful oral products.


Cathelicidin-WA Facilitated Intestinal Fatty Acid Absorption Through Enhancing PPAR-γ Dependent Barrier Function.

  • Xin Zong‎ et al.
  • Frontiers in immunology‎
  • 2019‎

The molecular mechanisms underlying the cellular uptake of long-chain fatty acids and the regulation of this process have been debated in recent decades. Here, we established an intestinal barrier dysfunction model in mice and Caco2 cell line by Lipopolysaccharide (LPS), and evaluated the fatty acid uptake capacity of the intestine. We found that LPS stimulation restricted the absorption of long chain fatty acid (LCFA), while Cathelicidin-WA (CWA) pretreatment facilitated this physiological process. At the molecular level, our results demonstrated that the stimulatory effects of CWA on intestinal lipid absorption were dependent on cluster determinant 36 and fatty acid transport protein 4, but not fatty acid-binding protein. Further, an enhanced intestinal barrier was observed in vivo and in vitro when CWA alleviated the fatty acid absorption disorder induced by LPS stimulation. Mechanistically, peroxisome proliferator-activated receptor (PPAR-γ) signaling was considered as a key pathway for CWA to enhance LCFA absorption and barrier function. Treatment with a PPAR-γ inhibitor led to impaired intestinal barrier function and suppressed LCFA uptake. Moreover, once PPAR-γ signaling was blocked, CWA pretreatment could not maintain the stability of the intestinal epithelial cell barrier or LCFA uptake after LPS stimulation. Collectively, these findings suggested that PPAR-γ may serve as a target for specific therapies aimed at alleviating fatty acid uptake disorder, and CWA showed considerable potential as a new PPAR-γ agonist to strengthen intestinal barrier function against fatty acid malabsorption.


Enterocyte HKDC1 Modulates Intestinal Glucose Absorption in Male Mice Fed a High-fat Diet.

  • Joseph L Zapater‎ et al.
  • Endocrinology‎
  • 2022‎

Hexokinase domain containing protein-1, or HKDC1, is a widely expressed hexokinase that is genetically associated with elevated 2-hour gestational blood glucose levels during an oral glucose tolerance test, suggesting a role for HKDC1 in postprandial glucose regulation during pregnancy. Our earlier studies utilizing mice containing global HKDC1 knockdown, as well as hepatic HKDC1 overexpression and knockout, indicated that HKDC1 is important for whole-body glucose homeostasis in aging and pregnancy, through modulation of glucose tolerance, peripheral tissue glucose utilization, and hepatic energy storage. However, our knowledge of the precise role(s) of HKDC1 in regulating postprandial glucose homeostasis under normal and diabetic conditions is lacking. Since the intestine is the main entry portal for dietary glucose, here we have developed an intestine-specific HKDC1 knockout mouse model, HKDC1Int-/-, to determine the in vivo role of intestinal HKDC1 in regulating glucose homeostasis. While no overt glycemic phenotype was observed, aged HKDC1Int-/- mice fed a high-fat diet exhibited an increased glucose excursion following an oral glucose load compared with mice expressing intestinal HKDC1. This finding resulted from glucose entry via the intestinal epithelium and is not due to differences in insulin levels, enterocyte glucose utilization, or reduction in peripheral skeletal muscle glucose uptake. Assessment of intestinal glucose transporters in high-fat diet-fed HKDC1Int-/- mice suggested increased apical GLUT2 expression in the fasting state. Taken together, our results indicate that intestinal HKDC1 contributes to the modulation of postprandial dietary glucose transport across the intestinal epithelium under conditions of enhanced metabolic stress, such as high-fat diet.


Can serum isotope levels accurately measure intestinal calcium absorption compared to gold-standard methods?

  • Andrew P Vreede‎ et al.
  • Nutrition journal‎
  • 2015‎

Low fractional calcium absorption (FCA) contributes to osteoporosis but is not measured clinically, as the gold-standard method requires administration of two calcium tracers and a subsequent 24-h urine collection. We evaluated alternate methods to measure FCA, compared to the gold standard method.


Transcriptional control of intestinal cholesterol absorption, adipose energy expenditure and lipid handling by Sortilin.

  • Sumihiko Hagita‎ et al.
  • Scientific reports‎
  • 2018‎

The sorting receptor Sortilin functions in the regulation of glucose and lipid metabolism. Dysfunctional lipid uptake, storage, and metabolism contribute to several major human diseases including atherosclerosis and obesity. Sortilin associates with cardiovascular disease; however, the role of Sortilin in adipose tissue and lipid metabolism remains unclear. Here we show that in the low-density lipoprotein receptor-deficient (Ldlr-/-) atherosclerosis model, Sortilin deficiency (Sort1-/-) in female mice suppresses Niemann-Pick type C1-Like 1 (Npc1l1) mRNA levels, reduces body and white adipose tissue weight, and improves brown adipose tissue function partially via transcriptional downregulation of Krüppel-like factor 4 and Liver X receptor. Female Ldlr-/-Sort1-/- mice on a high-fat/cholesterol diet had elevated plasma Fibroblast growth factor 21 and Adiponectin, an adipokine that when reduced is associated with obesity and cardiovascular disease-related factors. Additionally, Sort1 deficiency suppressed cholesterol absorption in both female mice ex vivo intestinal tissue and human colon Caco-2 cells in a similar manner to treatment with the NPC1L1 inhibitor ezetimibe. Together our findings support a novel role of Sortilin in energy regulation and lipid homeostasis in female mice, which may be a potential therapeutic target for obesity and cardiovascular disease.


EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers.

  • Andreia Granja‎ et al.
  • Heliyon‎
  • 2019‎

This work aimed to develop folic acid-functionalized nanostructured lipid carriers (NLC) loading epigallocatechin-3-gallate (EGCG) to increase its oral bioavailability. An active targeting strategy was used and these nanoparticles (NPs) were fully characterized. The NP's effect on Caco-2 cell viability was evaluated and the apparent permeability (Papp) on a Caco-2 cell monolayer was determined. The results demonstrated that the developed NPs exhibited adequate physicochemical characteristics for oral administration and were found to be biocompatible with epithelial Caco-2 cells. Further, folic acid-functionalized EGCG-loaded NLC significantly increased EGCG transport across the intestinal barrier, promoting a 1.8- fold increase in its apparent permeability (Papp). Taken together, these results support that the developed NLC can be used as a promising carrier for safer and efficient management of several diseases since the pharmacokinetic (PK) properties of EGCG were improved with this nanomedicine-based strategy.


The Role of Paracellular Transport in the Intestinal Absorption and Biopharmaceutical Characterization of Minoxidil.

  • Milica Markovic‎ et al.
  • Pharmaceutics‎
  • 2022‎

The purpose of this study was to evaluate mechanisms behind the intestinal permeability of minoxidil, with special emphasis on paracellular transport, and elucidate the suitability of minoxidil to be a reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil (vs. metoprolol) was evaluated in-silico, in-vitro using both the PAMPA assay and across Caco-2 cell monolayers, as well as in-vivo in rats throughout the entire intestine. The permeability was studied in conditions that represent the different segments of the small intestine: upper jejunum (pH 6.5), mid small intestine (pH 7.0), distal ileum (pH 7.5), and colon (pH 6.5). Since we aimed to investigate the paracellular transport of minoxidil, we have also examined its permeability in the presence of quercetin (250 µM), which closes the tight junctions, and sodium decanoate (10 mM), which opens the tight junctions. While metoprolol demonstrated segmental-dependent rat and PAMPA permeability, with higher permeability in higher pH regions, the permeability of minoxidil was pH-independent. Minoxidil PAMPA permeability was significantly lower than its rat permeability, indicating a potential significant role of the paracellular route. In rat intestinal perfusion studies, and across Caco-2 monolayers, tight junction modifiers significantly affected minoxidil permeability; while the presence of quercetin caused decreased permeability, the presence of sodium decanoate caused an increase in minoxidil permeability. In accordance with these in-vitro and in-vivo results, in-silico simulations indicated that approximatelly 15% of minoxidil dose is absorbed paracellularly, mainly in the proximal parts of the intestine. The results of this study indicate that paracellular transport plays a significant role in the intestinal permeability of minoxidil following oral administration. Since this permeation route may lead to higher variability in comparison to transcellular, these findings diminish the suitability of minoxidil to serve as the low/high BSC permeability class benchmark.


Increased Intestinal Absorption of Vitamin U in Steamed Graviola Leaf Extract Activates Nicotine Detoxification.

  • Eun-Hye Choi‎ et al.
  • Nutrients‎
  • 2019‎

Graviola leaves contain much vitamin U (vit U), but their sensory quality is not good enough for them to be developed as food ingredients. Addition of excipient natural ingredients formulated alongside vit U as active ingredients could enhance not only its sensory quality but also its bioavailability. The objectives of this study were to measure the bioaccessibility and intestinal cellular uptake of bioactive components, including rutin, kaempferol-rutinoside, and vit U, from steamed extract of graviola leaves (SGV) and SGV enriched with kale extract (SGK), and to examine how much they can detoxify nicotine in HepG2 cells. The bioaccessibility of vit U from SGV and SGK was 82.40% and 68.03%, respectively. The cellular uptake of vit U in SGK by Caco-2 cells was higher than that in SGV. Cotinine content converted from nicotine in HepG2 cells for 120 min was 0.22 and 0.25 μg/mg protein in 50 μg/mL of SGV and SGK, respectively, which were 2.86 and 3.57 times higher than the no-treatment control. SGK treatment of HepG2 cells upregulated CYP2A6 three times as much as did that of SGV. Our results suggest that graviola leaf extract enriched with excipient ingredients such as kale could improve vit U absorption and provide a natural therapy for detoxifying nicotine.


In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans.

  • Lisa Chedik‎ et al.
  • International journal of environmental research and public health‎
  • 2017‎

Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides (n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines (n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds (n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: