Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 785 papers

Bioaccumulation of current-use herbicides in fish from a global biodiversity hotspot: Lake St Lucia, South Africa.

  • Raymond Lubem Tyohemba‎ et al.
  • Chemosphere‎
  • 2021‎

Agricultural pesticides threaten aquatic systems and biodiversity at a global scale, but limited information is available on the accumulation of current-use herbicides in tissues of aquatic organisms. Here, we examine the potential exposure and accumulation of currently used herbicides in two species of fish from Lake St Lucia, a global biodiversity hotspot located in South Africa. Muscle tissue samples were analysed for 11 widely used multi-residue and phenoxy-acid herbicides. Herbicide residues were detected in all samples analysed, with total concentrations ranging from 44.3 to 238 ng g-1 (Clarias gariepinus) and 72.2-291 ng g-1 dw (Oreochromis mossambicus). The most prominent herbicides detected included the two phenoxy-acid herbicides, MCPA (17.6 ± 12 ng g-1) and 2,4-D (28.9 ± 16 ng g-1), along with acetochlor (15.4 ± 5.8 ng g-1), atrazine (12.7 ± 7.1 ng g-1) and terbuthylazine (12.4 ± 12 ng g-1). Results indicate that fish at Lake St Lucia accumulate a complex mixture of herbicides, some previously unreported in tissue, highlighting the potential threat that agricultural runoff may pose to conservation areas. However, assessing the impact of herbicide accumulation on wild fish populations is difficult at present and urgent toxicological data are needed to better understand chronic exposure effects on aquatic organisms. A preliminary human health risk assessment indicated minimal risk associated with the consumption of local fish, but potential additive and synergistic effects of contaminant mixtures remain unknown.


Dispersive Solid-Liquid Extraction Coupled with LC-MS/MS for the Determination of Sulfonylurea Herbicides in Strawberries.

  • Nho-Eul Song‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2019‎

The monitoring of food quality and safety requires a suitable analytical method with simultaneous detection in order to control pesticide and herbicide residues. In this study, a novel analytical method, referred to as "dispersive solid-liquid extraction", was applied to monitor seven sulfonylurea herbicides in strawberries. This method was optimized in terms of the amount of C18 and the volume of added water, and it was validated through satisfactory linearities (R2 > 0.99), recoveries of 70% to 84% with acceptable precisions, and limits of quantification lower than the maximum residue limits for the seven sulfonylurea herbicides in strawberries. The cleanup efficiency of the dispersive solid-liquid extraction technique was compared to that of the QuEChERS- ("quick, easy, cheap, effective, rugged and safe") based method with dispersive solid phase extraction. The recoveries of the former were found to be comparable to those involving QuEChERS C18 cleanup (recoveries of 74%-87%). The method was used to determine sulfonylurea herbicide residues in ten strawberry samples. None of the samples had herbicide residues higher than that of limit of quantifications (LOQs) or maximum residue limits (MRLs). The results suggest that the dispersive solid-liquid extraction method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) is effective for the analysis of sulfonylurea herbicide residues in strawberries.


Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean.

  • Kay L Walter‎ et al.
  • Pest management science‎
  • 2014‎

Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors.


Can the multi-walled carbon nanotubes be used to alleviate the phytotoxicity of herbicides in soils?

  • Ting Yao‎ et al.
  • Chemosphere‎
  • 2021‎

Herbicides are commonly used globally. However, residual herbicides in soils for ages often result in phytotoxicity and serious yield loss to subsequent crops. In this paper, the multi-walled carbon nanotubes (MWCNTs) were utilized to amend the herbicide polluted soil, and the adsorption performance of herbicides to MWCNTs amended soil was studied. Results indicate efficient alleviation of herbicide-induced phytotoxicity to rice and tobacco due to MWCNTs amendment. When 0.4% MWCNTs were applied, the concentration of sulfentrazone that inhibited the same rice height by 50% (IC50) increased to more than 3 times that of pure soil. When the MWCNTs were used to alleviate the phytotoxicity of quinclorac to tobacco, the MWCNTs not only alleviated the phytotoxicity of quinclorac but also promoted the growth of tobacco. The MWCNTs amended soil significantly increased the adsorption of herbicide to soil than biochar. The soil microbial analysis shows that MWCNTs had no significant effect on soil microbial community diversity, but the long-term exposure to MWCNTs could change the structure of the soil microbial community. Above all, our results highlighted the potential implication of the MWCNTs to ensure crop production by promoting crop growth and reducing the residual bioavailability of herbicides.


Triazolopyrimidine herbicides are potent inhibitors of Aspergillus fumigatus acetohydroxyacid synthase and potential antifungal drug leads.

  • Y S Low‎ et al.
  • Scientific reports‎
  • 2021‎

Aspergillus fumigatus is a fungal pathogen whose effects can be debilitating and potentially fatal in immunocompromised patients. Current drug treatment options for this infectious disease are limited to just a few choices (e.g. voriconazole and amphotericin B) and these themselves have limitations due to potentially adverse side effects. Furthermore, the likelihood of the development of resistance to these current drugs is ever present. Thus, new treatment options are needed for this infection. A new potential antifungal drug target is acetohydroxyacid synthase (AHAS; EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, and a target for many commercial herbicides. In this study, we have expressed, purified and characterised the catalytic subunit of AHAS from A. fumigatus and determined the inhibition constants for several known herbicides. The most potent of these, penoxsulam and metosulam, have Ki values of 1.8 ± 0.9 nM and 1.4 ± 0.2 nM, respectively. Molecular modelling shows that these compounds are likely to bind into the herbicide binding pocket in a mode similar to Candida albicans AHAS. We have also shown that these two compounds inhibit A. fumigatus growth at a concentration of 25 µg/mL. Thus, AHAS inhibitors are promising leads for the development of new anti-aspergillosis therapeutics.


Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines.

  • Céline Gasnier‎ et al.
  • Journal of occupational medicine and toxicology (London, England)‎
  • 2010‎

Worldwide used pesticides containing different adjuvants like Roundup formulations, which are glyphosate-based herbicides, can provoke some in vivo toxicity and in human cells. These pesticides are commonly found in the environment, surface waters and as food residues of Roundup tolerant genetically modified plants. In order to know their effects on cells from liver, a major detoxification organ, we have studied their mechanism of action and possible protection by precise medicinal plant extracts called Dig1.


Triazine Herbicides Risk Management Strategies on Environmental and Human Health Aspects Using In-Silico Methods.

  • Tianfu Yao‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

As an effective herbicide, 1, 3, 5-Triazine herbicides (S-THs) are used widely in the pesticide market. However, due to their chemical properties, S-THs severely threaten the environment and human health (e.g., human lung cytotoxicity). In this study, molecular docking, Analytic Hierarchy Process-Technique for Order Preference by Similarity to the Ideal Solution (AHP-TOPSIS), and a three-dimensional quantitative structure-active relationship (3D-QSAR) model were used to design S-TH substitutes with high herbicidal functionality, high microbial degradability, and low human lung cytotoxicity. We discovered a substitute, Derivative-5, with excellent overall performance. Furthermore, Taguchi orthogonal experiments, full factorial design of experiments, and the molecular dynamics method were used to identify three chemicals (namely, the coexistence of aspartic acid, alanine, and glycine) that could promote the degradation of S-THs in maize cropping fields. Finally, density functional theory (DFT), Estimation Programs Interface (EPI), pharmacokinetic, and toxicokinetic methods were used to further verify the high microbial degradability, favorable aquatic environment, and human health friendliness of Derivative 5. This study provided a new direction for further optimizations of novel pesticide chemicals.


Effectiveness and Selectivity of Pre- and Post-Emergence Herbicides for Weed Control in Grain Legumes.

  • Angeliki Kousta‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2024‎

Grain legumes represent important crops for livestock feed and contribute to novel uses in the food industry; therefore, the best cultivation practices need to be assessed. This study aimed to identify herbicides to meet the current need for controlling broadleaf weeds without phytotoxicity in the grain legume crop per se. Field experiments were undertaken during the 2019 and 2020 growing seasons and laid out in a randomized complete block design with three replicates as follows: four grain legume crops (vetch, pea, faba bean, and white lupine) and nine pre-emergence (PRE) or post-emergence selective (POST) herbicide treatments (PRE: aclonifen, pendimethalin plus clomazone, metribuzin plus clomazone, benfluralin, terbuthylazine plus pendimethalin, S-metolachlor plus pendimethalin, flumioxazin; POST: pyridate, imazamox) alongside weedy check plots. Plant phytotoxicity, crop dry matter, yield features, weed presence, and weed dry matter were assessed during the experiments. There was differential efficacy among the nine herbicide treatments; the weed control was more effective in the case of Veronica arvensis L. and Sonchus spp. L. compared with Chenopodium album L., Sinapis arvensis L., and Silibum marianum L. regardless of the herbicide treatment. The most effective PRE herbicide was flumioxazin, which had the greatest control over the majority of weeds (>70%) resulting in the lowest total weed biomass. The second-best treatment was benfluralin and the mixture of terbuthylazine plus pendimethalin (both had only limited control in S. arvensis). The best POST herbicide was imazamox, with only limited control in S. arvensis. The tested herbicides caused low to medium and transient levels of phytotoxicity mainly in vetch and secondly in peas but not in faba beans and lupines. Concerning all weed management treatments, benfluralin resulted in the highest grain yields for all four grain legume crops during both growing seasons. Among grain legumes, vetch had the highest competitive ability against weeds, whereas peas were the least tolerant against weed competition.


A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus.

  • Malay Das‎ et al.
  • Plant molecular biology‎
  • 2010‎

In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide contained glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), while the other four herbicides contain different acetolactate synthase (ALS) inhibiting compounds. In contrast to the herbicide containing glyphosate, which affected only a few transcripts, many effects of the ALS inhibiting herbicides were revealed based on transcriptional changes related to ribosome biogenesis and translation, secondary metabolism, cell wall modification and growth. The expression pattern of a set of 101 genes provided a specific, composite signature that was distinct from other major stress responses and differentiated among herbicides targeting the same enzyme (ALS) or containing the same chemical class of active ingredient (sulfonylurea). A set of homologous genes could be identified in Brassica napus that exhibited a similar expression pattern and correctly distinguished exposure to the five herbicides. Our results show the ability of a limited number of genes to classify and differentiate responses to closely related herbicides in A. thaliana and B. napus and the transferability of a complex transcriptional signature across species.


Biology, Germination Ecology, and Shade Tolerance of Alkaliweed (Cressa truxillensis) and Its Response to Common Postemergence Herbicides.

  • James Schaeffer‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Alkaliweed (Cressa truxillensis) is a native perennial plant of the western USA and in California, they are found primarily in saline and alkaline soils. Lately, it has been observed in Central Valley pistachio, olive, and almond orchards as a problematic species. Very little information is available on the effect of environmental factors on germination, shade tolerance, and the response of this species to herbicides. Therefore, studies were conducted to assess the effect of environmental factors (water potential, salinity, and pH) on seed germination, the influence of shade (30% shade 70% shade, and no shade) on aboveground growth, and the response of alkaliweed to common registered post-emergent herbicides. Results showed that the seeds were moderately tolerant to drought but highly adapted to salinity and pH as germination occurred up to an electrical conductivity level of 20 dS m-1 and pH range of 5 to 9. Both shade levels reduced aboveground growth and formation of reproductive structures. None of the postemergence herbicides provided adequate control of the plants. Therefore, an integrated management plan needs to be developed for alkaliweed control in Central Valley orchards.


Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides.

  • David J K Swainsbury‎ et al.
  • Biosensors & bioelectronics‎
  • 2014‎

The Rhodobacter sphaeroides reaction centre is a relatively robust and tractable membrane protein that has potential for exploitation in technological applications, including biohybrid devices for photovoltaics and biosensing. This report assessed the usefulness of the photocurrent generated by this reaction centre adhered to a small working electrode as the basis for a biosensor for classes of herbicides used extensively for the control of weeds in major agricultural crops. Photocurrent generation was inhibited in a concentration-dependent manner by the triazides atrazine and terbutryn, but not by nitrile or phenylurea herbicides. Measurements of the effects of these herbicides on the kinetics of charge recombination in photo-oxidised reaction centres in solution showed the same selectivity of response. Titrations of reaction centre photocurrents yielded half maximal inhibitory concentrations of 208nM and 2.1µM for terbutryn and atrazine, respectively, with limits of detection estimated at around 8nM and 50nM, respectively. Photocurrent attenuation provided a direct measure of herbicide concentration, with no need for model-dependent kinetic analysis of the signal used for detection or the use of prohibitively complex instrumentation, and prospects for the use of protein engineering to develop the sensitivity and selectivity of herbicide binding by the Rba. sphaeroides reaction centre are discussed.


Rapid On-Farm Testing of Resistance in Lolium rigidum to Key Pre- and Post-Emergence Herbicides.

  • Martina Badano Perez‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Overreliance on herbicides for weed control is conducive to the evolution of herbicide resistance. Lolium rigidum (annual ryegrass) is a species that is prone to evolve resistance to a wide range of herbicide modes of action. Rapid detection of herbicide-resistant weed populations in the field can aid farmers to optimize the use of effective herbicides for their control. The feasibility and utility of a rapid 7-d agar-based assay to reliably detect L. rigidum resistant to key pre- and post-emergence herbicides including clethodim, glyphosate, pyroxasulfone and trifluralin were investigated in three phases: correlation with traditional pot-based dose-response assays, effect of seed dormancy, and stability of herbicides in agar. Easy-to-interpret results were obtained using non-dormant seeds from susceptible and resistant populations, and resistance was detected similarly as pot-based assays. However, the test is not suitable for trifluralin because of instability in agar as measured over a 10-d period, as well as freshly-harvested seeds due to primary dormancy. This study demonstrates the utility of a portable and rapid assay that allows for on-farm testing of clethodim, glyphosate, and pyroxasulfone resistance in L. rigidum, thereby aiding the identification and implementation of effective herbicide control options.


Dissipation Dynamics and Residue of Four Herbicides in Paddy Fields Using HPLC-MS/MS and GC-MS.

  • Qian Yu‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

The dissipation dynamics and residue of pyrazosulfuron-ethyl, bensulfuron-methyl, acetochlor, and butachlor in paddy fields at Good Agricultural Practices (GAP) condition were carefully investigated in this study. The four herbicides' residues were determined based on a quick, easy, cheap, rugged, safe (QuEChERS) method coupled with HPLC-MS/MS and GC-MS. The limit of detection (LOD) for pyrazosulfuron-ethyl, bensulfuron-methyl, acetochlor, and butachlor in all matrices ranged from 0.04⁻1.0 ng. The limit of quantification (LOQ) of the four herbicides ranged from 0.01⁻0.1 mg/kg. Moreover, the average recoveries of the four herbicides ranged from 78.9⁻108% with relative standard deviations (RSDs) less than 15% at three different fortified levels for different matrices. The dissipation results indicated that the average half-lives (t1/2) of the four herbicides in soil were in the range of 3.5⁻17.8 days, and more than 95% of the four herbicides dissipated within 5 days in water. Furthermore, the final residues of the four herbicides were all below the LOQ at harvest time. Such results highlight the dissipation dynamics and residue of the four herbicides in a rice cropping system and contribute to risk assessment as well as scientific guidance on the proper and safe application of herbicides in paddy fields.


Low-dose exposure of glyphosate-based herbicides disrupt the urine metabolome and its interaction with gut microbiota.

  • Jianzhong Hu‎ et al.
  • Scientific reports‎
  • 2021‎

Glyphosate-based herbicides (GBHs) can disrupt the host microbiota and influence human health. In this study, we explored the potential effects of GBHs on urinary metabolites and their interactions with gut microbiome using a rodent model. Glyphosate and Roundup (equal molar for glyphosate) were administered at the USA glyphosate ADI guideline (1.75 mg/kg bw/day) to the dams and their pups. The urine metabolites were profiled using non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS). Our results found that overall urine metabolite profiles significantly differed between dams and pups and between female and male pups. Specifically, we identified a significant increase of homocysteine, a known risk factor of cardiovascular disease in both Roundup and glyphosate exposed pups, but in males only. Correlation network analysis between gut microbiome and urine metabolome pointed to Prevotella to be negatively correlated with the level of homocysteine. Our study provides initial evidence that exposures to commonly used GBH, at a currently acceptable human exposure dose, is capable of modifying urine metabolites in both rat adults and pups. The link between Prevotella-homocysteine suggests the potential role of GBHs in modifying the susceptibility of homocysteine, which is a metabolite that has been dysregulated in related diseases like cardiovascular disease or inflammation, through commensal microbiome.


Ser-653-Asn substitution in the acetohydroxyacid synthase gene confers resistance in weedy rice to imidazolinone herbicides in Malaysia.

  • Rabiatuladawiyah Ruzmi‎ et al.
  • PloS one‎
  • 2020‎

The continuous and sole dependence on imidazolinone (IMI) herbicides for weedy rice control has led to the evolution of herbicide resistance in weedy rice populations across various countries growing IMI herbicide-resistant rice (IMI-rice), including Malaysia. A comprehensive study was conducted to elucidate occurrence, level, and mechanisms endowing resistance to IMI herbicides in putative resistant (R) weedy rice populations collected from three local Malaysian IMI-rice fields. Seed bioassay and whole-plant dose-response experiments were conducted using commercial IMI herbicides. Based on the resistance index (RI) quantification in both experiments, the cross-resistance pattern of R and susceptible (S) weedy rice populations and control rice varieties (IMI-rice variety MR220CL2 and non-IMI-rice variety MR219) to imazapic and imazapyr was determined. A molecular investigation was carried out by comparing the acetohydroxyacid synthase (AHAS) gene sequences of the R and S populations and the MR220CL2 and MR219 varieties. The AHAS gene sequences of R weedy rice were identical to those of MR220CL2, exhibiting a Ser-653-Asn substitution, which was absent in MR219 and S plants. In vitro assays were conducted using analytical grade IMI herbicides of imazapic (99.3%) and imazapyr (99.6%) at seven different concentrations. The results demonstrated that the AHAS enzyme extracted from the R populations and MR220CL2 was less sensitive to IMI herbicides than that from S and MR219, further supporting that IMI herbicide resistance was conferred by target-site mutation. In conclusion, IMI resistance in the selected populations of Malaysian weedy rice could be attributed to a Ser-653-Asn mutation that reduced the sensitivity of the target site to IMI herbicides. To our knowledge, this study is the first to show the resistance mechanism in weedy rice from Malaysian rice fields.


Residues of Reduced Herbicides Terbuthylazine, Ametryn, and Atrazine and Toxicology to Maize and the Environment through Salicylic Acid.

  • Qian Qian Yu‎ et al.
  • ACS omega‎
  • 2021‎

Terbuthylazine (TBA), ametryn (AME), and atrazine (ATZ) are triazine family herbicides. They are dominantly used in the field of cereal crops like wheat and maize for prevention of upland from annual gramineous and broad-leaved weeds, with attributes of weed efficiency broad spectrum and good market performance. Salicylic acid (SA) is a kind of natural plant growth regulator existing widely in the plant kingdom and participating in many physiological and defense processes. In this study, the effects of SA on the detoxification and degradation of herbicides TBA, AME, and ATZ in maize were investigated. When maize plants were exposed to 6 mg kg-1 of the triazine herbicides, the growth and chlorophyll concentration were reduced, while the membrane permeability increased. After maize was sprayed with 5 mg kg-1 SA, the herbicide-induced phytotoxicity was significantly assuaged, with the increased content of chlorophyll and decreased cellular damage in plants. Activities of several biomarker enzymes such as SOD, POD, and GST were repressed in the presence of SA. The concentration of the triazine herbicides in maize and the soil determined by high-performance liquid chromatography was drastically reduced by spraying SA. Using LC/Q-TOF-MS/MS, six metabolites and nine conjugates of AME in maize and soil were characterized. The relative contents of AME metabolites and conjugates in maize with SA were higher than those without SA. These results suggest that SA is able to promote the detoxification and decay of these triazine herbicides in maize and soil.


Herbicides Tolerance in a Pseudomonas Strain Is Associated With Metabolic Plasticity of Antioxidative Enzymes Regardless of Selection.

  • Amanda Flávia da Silva Rovida‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Agriculture uses many food production chains, and herbicides participate in this process by eliminating weeds through different biochemical strategies. However, herbicides can affect non-target organisms such as bacteria, which can suffer damage if there is no efficient control of reactive oxygen species. It is not clear, according to the literature, whether the efficiency of this control needs to be selected by the presence of xenobiotics. Thus, the Pseudomonas sp. CMA 6.9 strain, collected from biofilms in an herbicide packaging washing tank, was selected for its tolerance to pesticides and analyzed for activities of different antioxidative enzymes against the herbicides Boral®, absent at the isolation site, and Heat®, present at the site; both herbicides have the same mode of action, the inhibition of the enzyme protoporphyrinogen oxidase. The strain showed tolerance to both herbicides in doses up to 45 times than those applied in agriculture. The toxicity of these herbicides, which is greater for Boral®, was assessed by means of oxidative stress indicators, growth kinetics, viability, and amounts of peroxide and malondialdehyde. However, the studied strain showed two characteristic antioxidant response systems for each herbicide: glutathione-s-transferase acting to control malondialdehyde in treatments with Boral®; and catalase, ascorbate peroxidase, and guaiacol peroxidase in the control of peroxide induced by Heat®. It is possible that this modulation of the activity of different enzymes independent of previous selection characterizes a system of metabolic plasticity that may be more general in the adaptation of microorganisms in soil and water environments subjected to chemical contaminants. This is relevant to the impact of pesticides on the diversity and abundance of microbial species as well as a promising line of metabolic studies in microbial consortia for use in bioremediation.


Solid-State Membrane Sensors Based on Man-Tailored Biomimetic Receptors for Selective Recognition of Isoproturon and Diuron Herbicides.

  • Ayman H Kamel‎ et al.
  • Membranes‎
  • 2020‎

Solid-contact ion-selective electrodes (SC-ISEs) have shown great potential for routine and portable ion detection. The introduction of nanomaterials as ion-to-electron transducers and the adoption of different performance-enhancement strategies have significantly promoted the development of SC-ISEs. Herein, new solid-contact ion-selective electrodes, along with the implementation of multiwalled carbon nanotubes (MWCNTs) as ion-to-electron transducers and potassium tetrakis (p-chlorophenyl) borate (KTpClB) as lipophilic ionic additives, were presented for the detection of isoproturon (IPU) and diuron (DU) herbicides. Molecularly imprinted polymers (MIPs), with special molecule recognition properties for isoproturon (IPU) and diuron (DU), were prepared, characterized, and introduced as sensory recognition materials in the presented electrodes. Sensors revealed a near-Nernstian response for both isoproturon (IPU) and diuron (DU) with slopes of 53.1 ± 1.2 (r2 = 0.997) and 57.2 ± 0.3 (r2 = 0.998) over the linear ranges of 2.2 × 10-6-1.0 × 10-3 M and 3.2 × 10-6-1.0 × 10-3 M with detection limits of 8.3 × 10-7 and 1.4 × 10-6 M, respectively. The response time of the presented sensors was found to be <5 s and the lifetime was at least eight weeks. The sensors exhibited good selectivity towards isoproturon (IPU) and diuron (DU) in comparison with some other herbicides, alkali, alkaline earth, and heavy metal ions. The presented sensors were successfully applied for the direct determination of isoproturon (IPU) and diuron (DU) in real water samples.


Field Survey and Resistance Occurrence to ALS-Inhibiting Herbicides in Glebionis coronaria L. in Tunisian Wheat Crops.

  • Zeineb Hada‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Glebionis coronaria (L.) Cass. ex Spach is a troublesome weed in cereal cropping systems in northern Tunisia. Recently, failures in controlling this weed have been reported by farmers. Field surveys and farmers interviews were conducted to highlight the potential causes of G. coronaria occurrence and the associated yield losses in wheat. Survey results revealed a significant correlation between farmers' awareness of resistance occurrence and cultural practices, mainly sowing date and tillage, while G. coronaria abundance was related to the lack of herbicide rotation and the frequency of ALS-inhibiting herbicide use. High G. coronaria infestations (more than 20 plants/m2) caused a significant decrease in wheat grain yield, reaching almost 75% at a density of 100 plants/m2. Field and pot experiments showed low efficacies of ALS-inhibiting herbicides to control G. coronaria populations. The application of field rates of tribenuron-methyl and mesosulfuron + iodosulfuron failed to control the tested populations, and generally, G. coronaria dry weight increased compared to nontreated ones (potential hormetic effect). These findings were further investigated in two selected resistant populations through tribenuron dose-response experiments, plants from both populations exhibited high resistance factors (greater than 300), surviving up to 16-fold the recommended field dose. This is the first report for G. coronaria resistance occurrence to ALS-inhibiting herbicides in Tunisia and the second case worldwide.


Sediment Facilitates Microbial Degradation of the Herbicides Endothall Monoamine Salt and Endothall Dipotassium Salt in an Aquatic Environment.

  • Md Shahidul Islam‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

Endothall dipotassium salt and monoamine salt are herbicide formulations used for controlling submerged aquatic macrophytes and algae in aquatic ecosystems. Microbial activity is the primary degradation pathway for endothall. To better understand what influences endothall degradation, we conducted a mesocosm experiment to (1) evaluate the effects of different water and sediment sources on degradation, and (2) determine if degradation was faster in the presence of a microbial community previously exposed to endothall. Endothall residues were determined with LC-MS at intervals to 21 days after endothall application. Two endothall isomers were detected. Isomer-1 was abundant in both endothall formulations, while isomer-2 was only abundant in the monoamine endothall formulation and was more persistent. Degradation did not occur in the absence of sediment. In the presence of sediment, degradation of isomer-1 began after a lag phase of 5⁻11 days and was almost complete by 14 days. Onset of degradation occurred 2⁻4 days sooner when the microbial population was previously exposed to endothall. We provide direct evidence that the presence and characteristics of sediment are of key importance in the degradation of endothall in an aquatic environment, and that monoamine endothall has two separate isomers that have different degradation characteristics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: