2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 228 papers

Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators.

  • Ofir Avidan‎ et al.
  • Scientific reports‎
  • 2017‎

Bdellovibrio bacteriovorus is an obligate predator of bacteria that grows and divides within the periplasm of its prey. Functions involved in the early steps of predation have been identified and characterized, but mediators of prey invasion are still poorly detailed. By combining omics data available for Bdellovibrio and like organisms (BALO's), we identified 43 genes expressed in B. bacteriovorus during the early interaction with prey. These included genes in a tight adherence (TAD) operon encoding for two type IVb fimbriae-like pilin proteins (flp1 and flp2), and their processing and export machinery. Two additional flp genes (flp3 and flp4) were computationally identified at other locations along the chromosome, defining the largest and most diverse type IVb complement known in bacteria to date. Only flp1, flp2 and flp4 were expressed; their respective gene knock-outs resulted in a complete loss of the predatory ability without losing the ability to adhere to prey cells. Additionally, we further demonstrate differential regulation of the flp genes as the TAD operon of BALOs with different predatory strategies is controlled by a flagellar sigma factor FliA, while flp4 is not. Finally, we show that FliA, a known flagellar transcriptional regulator in other bacteria, is an essential Bdellovibrio gene.


Localization of the bacterial agent of juvenile oyster disease (Roseovarius crassostreae) within affected eastern oysters (Crassostrea virginica).

  • Cynthia L Boardman‎ et al.
  • Journal of invertebrate pathology‎
  • 2008‎

The bacterium Roseovarius crassostreae causes seasonal mortalities among commercially produced eastern oysters (Crassostrea virginica) grown in the Northeastern United States. Phylogenetically, the species belongs to a major lineage of marine bacteria (the Roseobacter clade), within which Roseovarius crassostreae is the only known pathogen to be isolated in laboratory culture. The objective of the current study was to determine the location and nature of R. crassostreae interactions with oysters affected by juvenile oyster disease (JOD). Scanning electron microscopy of diseased individuals revealed abundant colonization of the inner shell surfaces by bacteria which were morphologically similar to R. crassostreae. The same types of cells were also observed on and within layers of host-derived conchiolin on the inner valves. Most bacterial cells were alive as determined by the use of a fluorescent viability stain. Further, most were clearly attached at the cell poles, which is consistent with the ability of R. crassostreae to express polar fimbriae. When material from the pallial fluid, soft tissue and inner valve surfaces was cultured, the highest numbers of R. crassostreae were recovered from the inner valves. These samples also contained the greatest abundance of R. crassostreae as a percentage of total colonies. Cloning and sequencing of 16S rRNA genes provided culture-independent evidence of the numerical dominance of R. crassostreae among the bacterial consortia associated with the inner shell surfaces of JOD-affected animals. The ability of R. crassostreae to colonize shell and conchiolin is consistent with the described JOD-pathology and may aid the bacteria in avoiding hemocyte-mediated killing.


Novel type of pilus associated with a Shiga-toxigenic E. coli hybrid pathovar conveys aggregative adherence and bacterial virulence.

  • Christina Lang‎ et al.
  • Emerging microbes & infections‎
  • 2018‎

A large German outbreak in 2011 was caused by a locus of enterocyte effacement (LEE)-negative enterohemorrhagic E. coli (EHEC) strain of the serotype O104:H4. This strain harbors markers that are characteristic of both EHEC and enteroaggregative E. coli (EAEC), including aggregative adhesion fimbriae (AAF) genes. Such rare EHEC/EAEC hybrids are highly pathogenic due to their possession of a combination of genes promoting severe toxicity and aggregative adhesion. We previously identified novel EHEC/EAEC hybrids and observed that one strain exhibited aggregative adherence but had no AAF genes. In this study, a genome sequence analysis showed that this strain belongs to the genoserotype O23:H8, MLST ST26, and harbors a 5.2 Mb chromosome and three plasmids. One plasmid carries some EAEC marker genes, such as aatA and genes with limited protein homology (11-61%) to those encoding the bundle-forming pilus (BFP) of enteropathogenic E. coli. Due to significant protein homology distance to known pili, we designated these as aggregate-forming pili (AFP)-encoding genes and the respective plasmid as pAFP. The afp operon was arranged similarly to the operon of BFP genes but contained an additional gene, afpA2, which is homologous to afpA. The deletion of the afp operon, afpA, or a nearby gene (afpR) encoding an AraC-like regulator, but not afpA2, led to a loss of pilin production, piliation, bacterial autoaggregation, and importantly, a >80% reduction in adhesion and cytotoxicity toward epithelial cells. Gene sets similar to the afp operon were identified in a variety of aatA-positive but AAF-negative intestinal pathogenic E. coli. In summary, we characterized widely distributed and novel fimbriae that are essential for aggregative adherence and cytotoxicity in a LEE-negative Shiga-toxigenic hybrid.


Natural killer cell-mediated host defense against uropathogenic E. coli is counteracted by bacterial hemolysinA-dependent killing of NK cells.

  • Chamutal Gur‎ et al.
  • Cell host & microbe‎
  • 2013‎

Uropathogenic Escherichia coli (UPEC) are a common cause of urinary tract infections (UTIs) in humans. While the importance of natural killer (NK) cells in innate immune protection against tumors and viral infections is well documented, their role in defense against bacterial infections is still emerging, and their involvement in UPEC-mediated UTI is practically unknown. Using a systematic mutagenesis approach, we found that UPEC adheres to NK cells primarily via its type I fimbriae and employs its hemolysinA toxin to kill NK cells. In the absence of hemolysinA, NK cells directly respond to the bacteria and secrete the cytokine TNF-α, which results in decreased bacterial numbers in vitro and reduction of bacterial burden in the infected bladders. Thus, NK cells control UPEC via TNF-α production, which UPEC counteracts by hemolysinA-mediated killing of NK cells, representing a previously unrecognized host defense and microbial counterattack mechanism in the context of UTI.


Interrupting oral infection of Porphyromonas gingivalis with anti-FimA antibody attenuates bacterial dissemination to the arthritic joint and improves experimental arthritis.

  • Sang Hoon Jeong‎ et al.
  • Experimental & molecular medicine‎
  • 2018‎

Rheumatoid arthritis (RA) is a chronic autoimmune disease that typically results in strong inflammation and bone destruction in the joints. It is generally known that the pathogenesis of RA is linked to cardiovascular and periodontal diseases. Though rheumatoid arthritis and periodontitis share many pathologic features such as a perpetual inflammation and bone destruction, the precise mechanism underlying a link between these two diseases has not been fully elucidated. Collagen-induced arthritis (CIA) mice were orally infected with Porphyromonas gingivalis (Pg) or Pg preincubated with an anti-FimA antibody (FimA Ab) specific for fimbriae that are flexible appendages on the cell surface. Pg-infected CIA mice showed oral microbiota disruption and increased alveolar bone loss and had synovitis and joint bone destruction. However, preincubation with FimA Ab led to a significant reduction in the severity of both oral disease and arthritis. Moreover, FimA Ab attenuated bacterial attachment and aggregation on human gingival and rheumatoid arthritis synovial fibroblasts. In addition, we discovered bacteria may utilize dendritic cells, macrophages and neutrophils to migrate into the joints of CIA mice. These results suggest that disrupting Pg fimbriae function by FimA Ab ameliorates RA.


Expression of virulence factor genes in co-infections with Trueperella pyogenes isolates and other bacterial pathogens; an in vivo study.

  • Iradj Ashrafi Tamai‎ et al.
  • Microbial pathogenesis‎
  • 2022‎

Trueperella pyogenes is an opportunistic bacterial pathogen causing several infectious diseases, including metritis, mastitis and abscesses in domestic animals such as dairy cattle. Several virulence proteins are released by T. pyogenes strains contributing to the pathogenic and causing disease potential of this pathogen. So far, many aspects of T. pyogenes pathogenesis are unknown. In this study, expression levels of plo, fimA, nanH and cbpA genes encoding pyolysin, fimbriae, neuraminidase and collagen-binding protein, respectively in T. pyogenes isolated from totally 15 metritis, mastitis and cutaneous abscesses convenience samples in response to co-culture with other pathogens including E. coli, St. dysgalactiae, S. aureus, F. necrophorum and L. plantarum strains in mice study model have been investigated. We found that expression levels of plo, fimA, nanH and cbpA genes in T. pyogenes isolates in response to co-culture with F. necrophorum and E. coli were significantly increased; however, no significant changes was seen in the level of expression of these genes in the isolates in response to co-culture with St. dysgalactiae and S. aureus. Notably, expression of all virulence factor genes was suppressed in T. pyogenes in response to co-culture with L. plantarum. We observed that L. plantarum might be used to prevent infectious diseases caused by T. pyogenes.


Heat-labile enterotoxin enhances F4-producing enterotoxigenic E. coli adhesion to porcine intestinal epithelial cells by upregulating bacterial adhesins and STb enterotoxin.

  • Qiangde Duan‎ et al.
  • Veterinary research‎
  • 2022‎

As one of the crucial enterotoxins secreted by enterotoxigenic Escherichia coli (ETEC), heat-labile enterotoxin (LT) enhances bacterial adherence both in vivo and in vitro; however, the underlying mechanism remains unclear. To address this, we evaluated the adherence of LT-producing and LT-deficient ETEC strains using the IPEC-J2 cell model. The expression levels of inflammatory cytokines and chemokines, and tight-junction proteins were evaluated in IPEC-J2 cells after infection with various ETEC strains. Further, the levels of adhesins and enterotoxins were also evaluated in F4ac-producing ETEC (F4 + ETEC) strains after treatment with cyclic AMP (cAMP). The adherence of the ΔeltAB mutant was decreased compared with the wild-type strain, whereas adherence of the 1836-2/pBR322-eltAB strain was markedly increased compared with the 1836-2 parental strain. Production of LT up-regulated the expression of TNF-α, IL-6, CXCL-8, and IL-10 genes. However, it did not appear to affect tight junction protein expression. Importantly, we found that cAMP leads to the upregulation of adhesin production and STb enterotoxin. Moreover, the F4 + ETEC strains treated with cAMP also had greater adhesion to IPEC-J2 cells, and the adherence of ΔfaeG, ΔfliC, and ΔestB mutants was decreased. These results indicate that LT enhances the adherence of F4 + ETEC due primarily to the upregulation of F4 fimbriae, flagellin, and STb enterotoxin expression and provide insights into the pathogenic mechanism of LT and ETEC.


In vitro Edwardsiella piscicida CK108 Transcriptome Profiles with Subinhibitory Concentrations of Phenol and Formalin Reveal New Insights into Bacterial Pathogenesis Mechanisms.

  • Ju Bin Yoon‎ et al.
  • Microorganisms‎
  • 2020‎

Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.


New insights into the bacterial fitness-associated mechanisms revealed by the characterization of large plasmids of an avian pathogenic E. coli.

  • Melha Mellata‎ et al.
  • PloS one‎
  • 2012‎

Extra-intestinal pathogenic E. coli (ExPEC), including avian pathogenic E. coli (APEC), pose a considerable threat to both human and animal health, with illness causing substantial economic loss. APEC strain χ7122 (O78∶K80∶H9), containing three large plasmids [pChi7122-1 (IncFIB/FIIA-FIC), pChi7122-2 (IncFII), and pChi7122-3 (IncI(2))]; and a small plasmid pChi7122-4 (ColE2-like), has been used for many years as a model strain to study the molecular mechanisms of ExPEC pathogenicity and zoonotic potential. We previously sequenced and characterized the plasmid pChi7122-1 and determined its importance in systemic APEC infection; however the roles of the other pChi7122 plasmids were still ambiguous. Herein we present the sequence of the remaining pChi7122 plasmids, confirming that pChi7122-2 and pChi7122-3 encode an ABC iron transport system (eitABCD) and a putative type IV fimbriae respectively, whereas pChi7122-4 is a cryptic plasmid. New features were also identified, including a gene cluster on pChi7122-2 that is not present in other E. coli strains but is found in Salmonella serovars and is predicted to encode the sugars catabolic pathways. In vitro evaluation of the APEC χ7122 derivative strains with the three large plasmids, either individually or in combinations, provided new insights into the role of plasmids in biofilm formation, bile and acid tolerance, and the interaction of E. coli strains with 3-D cultures of intestinal epithelial cells. In this study, we show that the nature and combinations of plasmids, as well as the background of the host strains, have an effect on these phenomena. Our data reveal new insights into the role of extra-chromosomal sequences in fitness and diversity of ExPEC in their phenotypes.


Structural insights into a cooperative switch between one and two FimH bacterial adhesins binding pauci- and high-mannose type N-glycan receptors.

  • Eva-Maria Krammer‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and oligomannose-5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in cocrystals of FimH is monovalent but interestingly the GlcNAc1-Fuc moiety retains highly flexibility. In cocrystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity.


Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface.

  • Jacqueline Montanaro‎ et al.
  • Drug design, development and therapy‎
  • 2015‎

To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs) as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN), whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results are an important step in constructing a delivery system based on a nonliving probiotic that is suitable for use in ocular surface diseases pairing immunomodulation and targeted delivery.


Reactivating Immunity Primed by Acellular Pertussis Vaccines in the Absence of Circulating Antibodies: Enhanced Bacterial Control by TLR9 Rather Than TLR4 Agonist-Including Formulation.

  • Floriane Auderset‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Pertussis is still observed in many countries despite of high vaccine coverage. Acellular pertussis (aP) vaccination is widely implemented in many countries as primary series in infants and as boosters in school-entry/adolescents/adults (including pregnant women in some). One novel strategy to improve the reactivation of aP-vaccine primed immunity could be to include genetically- detoxified pertussis toxin and novel adjuvants in aP vaccine boosters. Their preclinical evaluation is not straightforward, as it requires mimicking the human situation where T and B memory cells may persist longer than vaccine-induced circulating antibodies. Toward this objective, we developed a novel murine model including two consecutive adoptive transfers of the memory cells induced by priming and boosting, respectively. Using this model, we assessed the capacity of three novel aP vaccine candidates including genetically-detoxified pertussis toxin, pertactin, filamentous hemagglutinin, and fimbriae adsorbed to aluminum hydroxide, supplemented-or not-with Toll-Like-Receptor 4 or 9 agonists (TLR4A, TLR9A), to reactivate aP vaccine-induced immune memory and protection, reflected by bacterial clearance. In the conventional murine immunization model, TLR4A- and TLR9A-containing aP formulations induced similar aP-specific IgG antibody responses and protection against bacterial lung colonization as current aP vaccines, despite IL-5 down-modulation by both TLR4A and TLR9A and IL-17 up-modulation by TLR4A. In the absence of serum antibodies at time of boosting or exposure, TLR4A- and TLR9A-containing formulations both enhanced vaccine antibody recall compared to current aP formulations. Unexpectedly, however, protection was only increased by the TLR9A-containing vaccine, through both earlier bacterial control and accelerated clearance. This suggests that TLR9A-containing aP vaccines may better reactivate aP vaccine-primed pertussis memory and enhance protection than current or TLR4A-adjuvanted aP vaccines.


An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains.

  • Christophe Pichon‎ et al.
  • Nucleic acids research‎
  • 2012‎

Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli.


A Comparison of Diets Supplemented with a Feed Additive Containing Organic Acids, Cinnamaldehyde and a Permeabilizing Complex, or Zinc Oxide, on Post-Weaning Diarrhoea, Selected Bacterial Populations, Blood Measures and Performance in Weaned Pigs Experimentally Infected with Enterotoxigenic E. coli.

  • Ingunn Stensland‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2015‎

The effects of feeding a diet supplemented with zinc oxide (ZnO) or a blend of organic acids, cinnamaldehyde and a permeabilizing complex (OACP) on post-weaning diarrhoea (PWD) and performance in pigs infected with enterotoxigenic E. coli (ETEC) were examined. Additionally, changes in selected bacterial populations and blood measures were assessed. A total of 72 pigs weaned at 22 d of age and weighing 7.2 ± 1.02 kg (mean ± SEM) was used. Treatments were: base diet (no antimicrobial compounds); base diet + 3 g ZnO/kg; base diet + 1.5 g OACP/kg. Dietary treatments started on the day of weaning and were fed ad libitum for 3 weeks. All pigs were infected with an F4 ETEC on d 4, 5 and 6 after weaning. The incidence of PWD was lower in pigs fed ZnO ( p = 0.026). Overall, pigs fed ZnO grew faster ( p = 0.013) and ate more ( p = 0.004) than the base diet-fed pigs, with OACP-fed pigs performing the same ( p > 0.05) as both the ZnO- and base diet-fed pigs. Feed conversion ratio was similar for all diets ( p > 0.05). The percentage of E. coli with F4 fimbriae was affected a day by treatment interaction ( p = 0.037), with more E. coli with F4 fimbriae found in pigs fed ZnO on d 11 ( p = 0.011) compared to base diet-fed pigs. Only significant time effects ( p < 0.05) occurred for blood measures. Under the conditions of this study, inclusion of OACP gave statistically similar production responses to pigs fed ZnO, however pigs fed ZnO had less PWD compared to OACP- and the base diet-fed pigs.


Disruption of rcsB by a duplicated sequence in a curli-producing Escherichia coli O157:H7 results in differential gene expression in relation to biofilm formation, stress responses and metabolism.

  • V K Sharma‎ et al.
  • BMC microbiology‎
  • 2017‎

Escherichia coli O157:H7 (O157) strain 86-24, linked to a 1986 disease outbreak, displays curli- and biofilm-negative phenotypes that are correlated with the lack of Congo red (CR) binding and formation of white colonies (CR-) on a CR-containing medium. However, on a CR medium this strain produces red isolates (CR+) capable of producing curli fimbriae and biofilms.


Dominance Between Plasmids Determines the Extent of Biofilm Formation.

  • João Alves Gama‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Bacterial biofilms have an impact in medical and industrial environments because they often confer protection to bacteria against harmful agents, and constitute a source from which microorganisms can disperse. Conjugative plasmids can enhance bacterial ability to form biofilms because conjugative pili act as adhesion factors. However, plasmids may interact with each other, either facilitating or inhibiting plasmid transfer. Accordingly, we asked whether effects on plasmid transfer also impacts biofilm formation. We measured biofilm formation of Escherichia coli cells harboring two plasmid types, or when the two plasmids were present in the same population but carried in different cells. Using eleven natural isolated conjugative plasmids, we confirmed that some indeed promote biofilm formation and, importantly, that this ability is correlated with conjugative efficiency. Further we studied the effect of plasmid pairs on biofilm formation. We observed increased biofilm formation in approximately half of the combinations when both plasmids inhabited the same cell or when the plasmids were carried in different cells. Moreover, in approximately half of the combinations, independent of the co-inhabitation conditions, one of the plasmids alone determined the extent of biofilm formation - thus having a dominant effect over the other plasmid. The molecular mechanisms responsible for these interactions were not evaluated here and future research is required to elucidate them.


Dictamnine Inhibits the Adhesion to and Invasion of Uropathogenic Escherichia Coli (UPEC) to Urothelial Cells.

  • Wenbo Yang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Uropathogenic Escherichia coli (UPEC) is the most common pathogenic bacteria associated with urinary tract infection (UTI). UPEC can cause UTI by adhering to and invading uroepithelial cells. Fimbriae is the most important virulence factor of UPEC, and a potentially promising target in developing novel antibacterial treatments. In this study, the antibacterial properties and effects of the compound dictamnine, extracted from the traditional Chinese medicine Cortex Dictamni, on the bacterial morphology, cell adhesion, and invasion of UPEC were studied. Dictamnine exhibited no obvious antibacterial activity against UPEC, but significantly impeded the ability of UPEC to adhere to and invade uroepithelial cells. RT-qPCR analysis showed that treatment downregulated the expression of type 1 fimbriae, P fimbriae, and curli fimbriae adhesion genes, and also downregulated adhesion-related receptor genes of uroepithelial cells. Transmission electron microscopy showed that dictamnine destroyed the structure of the fimbriae and the surface of the bacteria became smooth. These results suggest that dictamnine may help to prevent UTI by simultaneously targeting UPEC fimbriae and urothelial adhesin receptors, and may have a potential use as a new anti-UPEC drug.


Benefits and Drawbacks of Harboring Plasmid pP32BP2, Identified in Arctic Psychrophilic Bacterium Psychrobacter sp. DAB_AL32B.

  • Anna Ciok‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Psychrobacter sp. DAB_AL32B, originating from Spitsbergen island (Arctic), carries the large plasmid pP32BP2 (54,438 bp). Analysis of the pP32BP2 nucleotide sequence revealed the presence of three predicted phenotypic modules that comprise nearly 30% of the plasmid genome. These modules appear to be involved in fimbriae synthesis via the chaperone-usher pathway (FIM module) and the aerobic and anaerobic metabolism of carnitine (CAR and CAI modules, respectively). The FIM module was found to be functional in diverse hosts since it facilitated the attachment of bacterial cells to abiotic surfaces, enhancing biofilm formation. The CAI module did not show measurable activity in any of the tested strains. Interestingly, the CAR module enabled the enzymatic breakdown of carnitine, but this led to the formation of the toxic by-product trimethylamine, which inhibited bacterial growth. Thus, on the one hand, pP32BP2 can enhance biofilm formation, a highly advantageous feature in cold environments, while on the other, it may prevent bacterial growth under certain environmental conditions. The detrimental effect of harboring pP32BP2 (and its CAR module) seems to be conditional, since this replicon may also confer the ability to use carnitine as an alternative carbon source, although a pathway to utilize trimethylamine is most probably necessary to make this beneficial. Therefore, the phenotype determined by this CAR-containing plasmid depends on the metabolic background of the host strain.


Two novel EHEC/EAEC hybrid strains isolated from human infections.

  • Rita Prager‎ et al.
  • PloS one‎
  • 2014‎

The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC) of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteroaggregative E. coli (EAEC). Such strains have been described seldom but due to the combination of virulence genes show a high pathogenicity potential. To evaluate the importance of EHEC/EAEC hybrid strains in human disease, we analyzed the EHEC strain collection of the German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens (NRC). After exclusion of O104:H4 EHEC/EAEC strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAEC marker genes, specifically were stx2 and aatA positive. Like the 2011 outbreak strain, one of the novel EHEC/EAEC harbored the Shiga toxin gene type stx2a. The strain was isolated from a patient with bloody diarrhea in 2010, was serotyped as O59:H-, belonged to MLST ST1136, and exhibited genes for type IV aggregative adherence fimbriae (AAF). The second strain was isolated from a patient with diarrhea in 2012, harbored stx2b, was typed as Orough:H-, and belonged to MLST ST26. Although the strain conferred the aggregative adherence phenotype, no known AAF genes corresponding to fimbrial types I to V were detected. In summary, EHEC/EAEC hybrid strains are currently rarely isolated from human disease cases in Germany and two novel EHEC/EAEC of rare serovars/MLST sequence types were characterized.


Increased biofilm formation ability in Klebsiella pneumoniae after short-term exposure to a simulated microgravity environment.

  • Haili Wang‎ et al.
  • MicrobiologyOpen‎
  • 2016‎

Biofilm formation is closely related to the pathogenetic processes of Klebsiella pneumoniae, which frequently causes infections in immunocompromised individuals. The immune system of astronauts is compromised in spaceflight. Accordingly, K. pneumoniae, which used to be isolated from orbiting spacecraft and astronauts, poses potential threats to the health of astronauts and mission security. Microgravity is a key environmental cue during spaceflight. Therefore, determining its effects on bacterial biofilm formation is necessary. In this study, K. pneumoniae ATCC BAA-1705 was exposed to a simulated microgravity (SMG) environment. K. pneumoniae grown under SMG formed thicker biofilms compared with those under normal gravity (NG) control after 2 weeks of subculture. Two indicative dyes (i.e., Congo red and calcofluor) specifically binding to cellulose fibers and/or fimbriae were utilized to reconfirm the enhanced biofilm formation ability of K. pneumoniae grown under SMG. Further analysis showed that the biofilms formed by SMG-treated K. pneumoniae were susceptible to cellulase digestion. Yeast cells mannose-resistant agglutination by K. pneumoniae type 3 fimbriae was more obvious in the SMG group, which suggests that cellulose production and type 3 fimbriae expression in K. pneumoniae were both enhanced under the SMG condition. Transcriptomic analysis showed that 171 genes belonging to 15 functional categories were dysregulated in this organism exposed to the SMG conditions compared with those in the NG group, where the genes responsible for the type 3 fimbriae (mrkABCDF) and its regulator (mrkH) were upregulated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: