Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 169 papers

Abnormalities in mitochondrial structure in cells from patients with bipolar disorder.

  • Anne M Cataldo‎ et al.
  • The American journal of pathology‎
  • 2010‎

Postmortem, genetic, brain imaging, and peripheral cell studies all support decreased mitochondrial activity as a factor in the manifestation of Bipolar Disorder (BD). Because abnormal mitochondrial morphology is often linked to altered energy metabolism, we investigated whether changes in mitochondrial structure were present in brain and peripheral cells of patients with BD. Mitochondria from patients with BD exhibited size and distributional abnormalities compared with psychiatrically-healthy age-matched controls. Specifically, in brain, individual mitochondria profiles had significantly smaller areas, on average, in BD samples (P = 0.03). In peripheral cells, mitochondria in BD samples were concentrated proportionately more within the perinuclear region than in distal processes (P = 0.0008). These mitochondrial changes did not appear to be correlated with exposure to lithium. Also, these abnormalities in brain and peripheral cells were independent of substantial changes in the actin or tubulin cytoskeleton with which mitochondria interact. The observed changes in mitochondrial size and distribution may be linked to energy deficits and, therefore, may have consequences for cell plasticity, resilience, and survival in patients with BD, especially in brain, which has a high-energy requirement. The findings may have implications for diagnosis, if they are specific to BD, and for treatment, if they provide clues as to the underlying pathophysiology of BD.


Therapeutic Delivery of Ang(1-7) via Genetically Modified Probiotic: A Dosing Study.

  • Christy S Carter‎ et al.
  • The journals of gerontology. Series A, Biological sciences and medical sciences‎
  • 2020‎

In recent years a number of beneficial health effects have been ascribed to the renin-angiotensin system (RAS) that extend beyond lowering blood pressure, primarily mediated via the angiotensin-converting enzyme-2 (ACE2)/angiotensin (1-7) or Ang(1-7)/MAS receptor axis. Moreover, once thought as merely a systemic effector, RAS components exist within tissues. The highest tissue concentrations of ACE2 mRNA are located in the gut making it an important target for altering RAS function. Indeed, genetically engineered recombinant probiotics are promising treatment strategies offering delivery of therapeutic proteins with precision. An Ang(1-7) secreting Lactobacillus paracasei (LP) or LP-A has been described for regulation of diabetes and hypertension; however, we are the first to the best of our knowledge to propose this paradigm as it relates to aging. In this Research Practice manuscript, we provide proof of concept for using this technology in a well-characterized rodent model of aging: the Fisher344 x Brown Norway Rat (F344BN). Our primary findings suggest that LP-A increases circulating levels of Ang(1-7) both acutely and chronically (after 8 or 28 treatment days) when administered 3× or 7×/week over 4 weeks. Our future preclinical studies will explore the impact of this treatment on gut and other age-sensitive distal tissues such as brain and muscle.


Mitochondrial DNA content and oxidation in bipolar disorder and its role across brain regions.

  • D F Bodenstein‎ et al.
  • NPJ schizophrenia‎
  • 2019‎

The underlying pathology of bipolar disorder remains unknown, though evidence is accumulating to support a role of mitochondrial dysfunction. In this study, we aim to investigate electron transport chain complex I subunit NDUFS7 protein expression; mtDNA content; common deletion; and oxidation in the Broadmann area 24 (BA24), cerebellum, hippocampus, and prefrontal cortex from patients with bipolar disorder, schizophrenia, and non-psychiatric controls. Here, we demonstrate no changes in NDUFS7 in BA24, cerebellum or hippocampus, increases in mtDNA content in hippocampus of patients with bipolar disorder, and decreases in mtDNA oxidation in patients with bipolar disorder and schizophrenia, respectively. Paired analysis between BA24 and cerebellum reveal increases within NDUFS7 levels and mtDNA content in cerebellum of patients with bipolar disorder or schizophrenia. We found a positive correlation between NDUFS7 and mtDNA content (ND4 and ND5) when combining brain regions. Our study supports the involvement of mitochondrial dysfunction in bipolar disorder and schizophrenia.


More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes.

  • Toni S Pearson‎
  • Tremor and other hyperkinetic movements (New York, N.Y.)‎
  • 2016‎

The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized.


Quantification of Daily-Living Gait Quantity and Quality Using a Wrist-Worn Accelerometer in Huntington's Disease.

  • Karin Keren‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Background: Huntington's disease (HD) leads to altered gait patterns and reduced daily-living physical activity. Accurate measurement of daily-living walking that takes into account involuntary movements (e.g. chorea) is needed. Objective: To evaluate daily-living gait quantity and quality in HD, taking into account irregular movements. Methods: Forty-two individuals with HD and fourteen age-matched non-HD peers completed clinic-based assessments and a standardized laboratory-based circuit of functional activities, wearing inertial measurement units on the wrists, legs, and trunk. These activities were used to train and test an algorithm for the automated detection of walking. Subsequently, 29 HD participants and 22 age-matched non-HD peers wore a tri-axial accelerometer on their non-dominant wrist for 7 days. Measures included gait quantity (e.g., steps per day), gait quality (e.g., regularity) metrics, and percentage of walking bouts with irregular movements. Results: Measures of daily-living gait quantity including step counts, walking time and bouts per day were similar in HD participants and non-HD peers (p > 0.05). HD participants with higher clinician-rated upper body chorea had a greater percentage of walking bouts with irregular movements compared to those with lower chorea (p = 0.060) and non-HD peers (p < 0.001). Even after accounting for irregular movements, within-bout walking consistency was lower in HD participants compared to non-HD peers (p < 0.001), while across-bout variability of these measures was higher (p < 0.001). Many of the daily-living measures were associated with disease-specific measures of motor function. Conclusions: Results suggest that a wrist-worn accelerometer can be used to evaluate the quantity and quality of daily-living gait in people with HD, while accounting for the influence of irregular (choreic-like) movements, and that gait features related to within- and across-bout consistency markedly differ in individuals with HD and non-HD peers.


Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain.

  • Joanne H Gibson‎ et al.
  • BMC neuroscience‎
  • 2010‎

The Rett Syndrome (RTT) brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected.


Neuroprotective potential of escitalopram against behavioral, mitochondrial and oxidative dysfunction induced by 3-nitropropionic acid.

  • Shruthi Shetty‎ et al.
  • Annals of neurosciences‎
  • 2015‎

Huntington's disease (HD) is a neurodegenerative syndrome that leads to marked decline in cognitive functioning along with uncharacteristic body movements called chorea. There exists no therapeutic agent to address the disease.3-Nitropropionic acid (3-NP) which is a suicide inhibitor of succinate dehydrogenase and a well-known experimental model to study Huntington's disease, causes substantial impairment in gait and memory through oxidative and neuronal damage.


Identification of contributing genes of Huntington's disease by machine learning.

  • Jack Cheng‎ et al.
  • BMC medical genomics‎
  • 2020‎

Huntington's disease (HD) is an inherited disorder caused by the polyglutamine (poly-Q) mutations of the HTT gene results in neurodegeneration characterized by chorea, loss of coordination, cognitive decline. However, HD pathogenesis is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of HD's mechanism from machine learning is so far unrealized, majorly due to the lack of needed data density.


The Pathogenic Role of Low Range Repeats in SCA17.

  • Jung Hwan Shin‎ et al.
  • PloS one‎
  • 2015‎

SCA17 is an autosomal dominant cerebellar ataxia with expansion of the CAG/CAA trinucleotide repeats in the TATA-binding protein (TBP) gene. SCA17 can have various clinical presentations including parkinsonism, ataxia, chorea and dystonia. SCA17 is diagnosed by detecting the expanded CAG repeats in the TBP gene; however, in the literature, pathologic repeat numbers as low as 41 overlap with normal repeat numbers.


Vitamin D and Hyperkinetic Movement Disorders: A Systematic Review.

  • Carl N Homann‎ et al.
  • Tremor and other hyperkinetic movements (New York, N.Y.)‎
  • 2020‎

The importance of vitamin D deficiency in Parkinson's disease, its negative influence on bone health, and even disease pathogenesis has been studied intensively. However, despite its possible severe impact on health and quality of life, there is not a sufficient understanding of its role in other movement disorders. This systematic review aims at providing an overview of the prevalence of vitamin D deficiency, bone metabolism alterations, and fractures in each of the most common hyperkinetic movement disorders (HKMDs).


The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep.

  • Dawn H Loh‎ et al.
  • PloS one‎
  • 2013‎

Sleep and circadian disruptions are commonly reported by patients with neurodegenerative diseases, suggesting these may be an endophenotype of the disorders. Several mouse models of Huntington's disease (HD) that recapitulate the disease progression and motor dysfunction of HD also exhibit sleep and circadian rhythm disruption. Of these, the strongest effects are observed in the transgenic models with multiple copies of mutant huntingtin gene. For developing treatments of the human disease, knock-in (KI) models offer advantages of genetic precision of the insertion and control of mutation copy number. Therefore, we assayed locomotor activity and immobility-defined sleep in a new model of HD with an expansion of the KI repeats (Q175). We found evidence for gene dose- and age-dependent circadian disruption in the behavior of the Q175 line. We did not see evidence for loss of cells or disruption of the molecular oscillator in the master pacemaker, the suprachiasmatic nucleus (SCN). The combination of the precise genetic targeting in the Q175 model and the observed sleep and circadian disruptions make it tractable to study the interaction of the underlying pathology of HD and the mechanisms by which the disruptions occur.


FTL mutation in a Chinese pedigree with neuroferritinopathy.

  • Wang Ni‎ et al.
  • Neurology. Genetics‎
  • 2016‎

Neuroferritinopathy is a rare autosomal dominant movement disorder caused by mutations of the FTL gene.(1) It is clinically characterized by adult-onset progressive extrapyramidal syndrome, including chorea, dystonia, and parkinsonism.(2) Brain MRI demonstrates the deposition of iron and ferritin in the basal ganglia.(3) To date, several Caucasian families and 2 Japanese families have been reported worldwide.(2) We present a Chinese neuroferritinopathy pedigree with 5 patients and the FTL mutation.


Drosophila Vps13 Is Required for Protein Homeostasis in the Brain.

  • Jan J Vonk‎ et al.
  • PloS one‎
  • 2017‎

Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A) gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2)P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis.


Pharmacogenetics in the Treatment of Huntington's Disease: Review and Future Perspectives.

  • Xandra García-González‎ et al.
  • Journal of personalized medicine‎
  • 2023‎

Huntington's disease (HD) is an autosomal dominant progressive brain disorder, caused by a pathological expansion of a CAG repeat that encodes the huntingtin gene. This genetic neurodegenerative rare disease is characterized by cognitive, motor, and neuropsychiatric manifestations. The aim of the treatment is symptomatic and addresses the hyperkinetic disorders (chorea, dystonia, myoclonus, tics, etc.) and the behavioural and cognitive disturbances (depression, anxiety, psychosis, etc.) associated with the disease. HD is still a complex condition in need of innovative and efficient treatment. The long-term goal of pharmacogenetic studies is to use genotype data to predict the effective treatment response to a specific drug and, in turn, prevent potential undesirable effects of its administration. Chorea, depression, and psychotic symptoms have a substantial impact on HD patients' quality of life and could be better controlled with the help of pharmacogenetic knowledge. We aimed to carry out a review of the available publications and evidence related to the pharmacogenetics of HD, with the objective of compiling all information that may be useful in optimizing drug administration. The impact of pharmacogenetic information on the response to antidepressants and antipsychotics is well documented in psychiatric patients, but this approach has not been investigated in HD patients. Future research should address several issues to ensure that pharmacogenetic clinical use is appropriately supported, feasible, and applicable.


Phosphine modification of proline-glycine-proline tripeptide and study of its neuroprotective properties.

  • Vinyukov V Alexey‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Treatment of neurodegenerative diseases, such as Parkinson's disease, Huntington's chorea, Alzheimer's disease, is one of the priority directions in modern medicine. Thus, search and production of new physiologically active substances for the treatment of neurodegenerative disorders is one of the most important tasks for organic chemistry. The approach based on the replacement of a peptide bond in a peptide molecule with a structural isostere, non-hydrolyzable methylene phosphoryl fragment makes it possible to increase the metabolic stability of peptide molecules to the destructive action of peptidases.


Acanthocyte Sedimentation Rate as a Diagnostic Biomarker for Neuroacanthocytosis Syndromes: Experimental Evidence and Physical Justification.

  • Alexis Darras‎ et al.
  • Cells‎
  • 2021‎

(1) Background: Chorea-acanthocytosis and McLeod syndrome are the core diseases among the group of rare neurodegenerative disorders called neuroacanthocytosis syndromes (NASs). NAS patients have a variable number of irregularly spiky erythrocytes, so-called acanthocytes. Their detection is a crucial but error-prone parameter in the diagnosis of NASs, often leading to misdiagnoses. (2) Methods: We measured the standard Westergren erythrocyte sedimentation rate (ESR) of various blood samples from NAS patients and healthy controls. Furthermore, we manipulated the ESR by swapping the erythrocytes and plasma of different individuals, as well as replacing plasma with dextran. These measurements were complemented by clinical laboratory data and single-cell adhesion force measurements. Additionally, we followed theoretical modeling approaches. (3) Results: We show that the acanthocyte sedimentation rate (ASR) with a two-hour read-out is significantly prolonged in chorea-acanthocytosis and McLeod syndrome without overlap compared to the ESR of the controls. Mechanistically, through modern colloidal physics, we show that acanthocyte aggregation and plasma fibrinogen levels slow down the sedimentation. Moreover, the inverse of ASR correlates with the number of acanthocytes (R2=0.61, p=0.004). (4) Conclusions: The ASR/ESR is a clear, robust and easily obtainable diagnostic marker. Independently of NASs, we also regard this study as a hallmark of the physical view of erythrocyte sedimentation by describing anticoagulated blood in stasis as a percolating gel, allowing the application of colloidal physics theory.


SOX5-Null Heterozygous Mutation in a Family with Adult-Onset Hyperkinesia and Behavioral Abnormalities.

  • Michael Zech‎ et al.
  • Case reports in genetics‎
  • 2017‎

SOX5 encodes a conserved transcription factor implicated in cell-fate decisions of the neural lineage. SOX5 haploinsufficiency induced by larger genomic deletions has been linked to a recognizable pediatric syndrome combining developmental delay with intellectual disability, mild dysmorphism, inadequate behavior, and variable additional features including motor disturbances. In contrast to SOX5-involving deletions, examples of pathogenic SOX5 small coding variations are sparse in the literature and have been described only in singular cases with phenotypic abnormalities akin to those seen in the SOX5 microdeletion syndrome. Here a novel SOX5 loss-of-function point mutation, c.13C>T (p.Arg5X), is reported, identified in the course of exome sequencing applied to the diagnosis of an unexplained adult-onset motor disorder. Aged 43 years, our female index patient demonstrated abrupt onset of mixed generalized hyperkinesia, with dystonic and choreiform movements being the most salient features. The movement disorder was accompanied by behavioral problems such as anxiety and mood instability. The mutation was found to be inherited to the patient's son who manifested abnormal behavior including diminished social functioning, paranoid ideation, and anxiety since adolescence. Our results expand the compendium of SOX5 damaging single-nucleotide variation mutations and suggest that SOX5 haploinsufficiency might not be restrictively associated with childhood-onset syndromic disease.


Group A streptococcal antigen exposed rat model to investigate neurobehavioral and cardiac complications associated with post-streptococcal autoimmune sequelae.

  • Rukshan A M Rafeek‎ et al.
  • Animal models and experimental medicine‎
  • 2021‎

The neuropsychiatric disorders due to post-streptococcal autoimmune complications such as Sydenham's chorea (SC) are associated with acute rheumatic fever and rheumatic heart disease (ARF/RHD). An animal model that exhibits characteristics of both cardiac and neurobehavioral defects in ARF/RHD would be an important adjunct for future studies. Since age, gender, strain differences, and genotypes impact on the development of autoimmunity, we investigated the behavior of male and female Wistar and Lewis rat strains in two age cohorts (<6 weeks and >12 weeks) under normal husbandry conditions and following exposure to group A streptococcus (GAS).


Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington's disease.

  • Bronwen Martin‎ et al.
  • Diabetes‎
  • 2009‎

The aim of this study was to find an effective treatment for the genetic form of diabetes that is present in some Huntington's disease patients and in Huntington's disease mouse models. Huntington's disease is a neurodegenerative disorder caused by a polyglutamine expansion within the huntingtin protein. Huntington's disease patients exhibit neuronal dysfunction/degeneration, chorea, and progressive weight loss. Additionally, they suffer from abnormalities in energy metabolism affecting both the brain and periphery. Similarly to Huntington's disease patients, mice expressing the mutated human huntingtin protein also exhibit neurodegenerative changes, motor dysfunction, perturbed energy metabolism, and elevated blood glucose levels.


Altered Prion protein expression pattern in CSF as a biomarker for Creutzfeldt-Jakob disease.

  • Mauricio Torres‎ et al.
  • PloS one‎
  • 2012‎

Creutzfeldt-Jakob disease (CJD) is the most frequent human Prion-related disorder (PrD). The detection of 14-3-3 protein in the cerebrospinal fluid (CSF) is used as a molecular diagnostic criterion for patients clinically compatible with CJD. However, there is a pressing need for the identification of new reliable disease biomarkers. The pathological mechanisms leading to accumulation of 14-3-3 protein in CSF are not fully understood, however neuronal loss followed by cell lysis is assumed to cause the increase in 14-3-3 levels, which also occurs in conditions such as brain ischemia. Here we investigated the relation between the levels of 14-3-3 protein, Lactate dehydrogenase (LDH) activity and expression of the prion protein (PrP) in CSF of sporadic and familial CJD cases. Unexpectedly, we found normal levels of LDH activity in CJD cases with moderate levels of 14-3-3 protein. Increased LDH activity was only observed in a percentage of the CSF samples that also exhibited high 14-3-3 levels. Analysis of the PrP expression pattern in CSF revealed a reduction in PrP levels in all CJD cases, as well as marked changes in its glycosylation pattern. PrP present in CSF of CJD cases was sensitive to proteases. The alterations in PrP expression observed in CJD cases were not detected in other pathologies affecting the nervous system, including cases of dementia and tropical spastic paraparesis/HTLV-1 associated myelopathy (HAM/TSP). Time course analysis in several CJD patients revealed that 14-3-3 levels in CSF are dynamic and show a high degree of variability during the end stage of the disease. Post-mortem analysis of brain tissue also indicated that 14-3-3 protein is upregulated in neuronal cells, suggesting that its expression is modulated during the course of the disease. These results suggest that a combined analysis of 14-3-3 and PrP expression pattern in CSF is a reliable biomarker to confirm the clinical diagnosis of CJD patients and follow disease progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: