Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 3,142 papers

Chloroquine may induce endothelial injury through lysosomal dysfunction and oxidative stress.

  • PauloC Gregório‎ et al.
  • Toxicology and applied pharmacology‎
  • 2021‎

COVID-19 is a pandemic with no end in sight. There is only one approved antiviral agent but global stocks are deemed insufficient. Despite in vitro antiviral activity, clinical trials of chloroquine and hydroxychloroquine were disappointing, and they may even impair outcomes. Chloroquine causes zebroid deposits reminiscent of Fabry disease (α-galactosidase A deficiency) and endothelial cells are key targets of COVID-19. We have explored the effect of chloroquine on cultured endothelial cells and its modulation by recombinant α-galactosidase A (agalsidase). Following dose-response studies, 0.5 μg/mL chloroquine was added to cultured human endothelial cells. Neutral red and Lysotracker were used to assess lysosomes. Cytotoxicity was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) - MTT assay and cell stress by assessing reactive oxygen species (ROS) and nitric oxide (NO). In endothelial cells, chloroquine induced dose-dependent cytotoxicity at in vitro test concentrations for COVID-19 therapy. At a sublethal concentration, chloroquine significantly induced the accumulation of acid organelles (P < 0.05), increased ROS levels, and decreased NO production (P < 0.05). These adverse effects of chloroquine on endothelial cell biology were decreased by agalsidase-β (P < 0.05). Chloroquine-induced endothelial cell cytotoxicity and stress is attenuated by agalsidase-β treatment. This suggests that endothelial cell injury may contribute to the failure of chloroquine as therapy for COVID-19 and may be at least in part related to causing dysfunction of the lysosomal enzyme α-galactosidase A.


Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter.

  • Romain Coppée‎ et al.
  • Scientific reports‎
  • 2020‎

Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing <15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.


Impairment of substrate-mediated mitochondrial respiration in cardiac cells by chloroquine.

  • Sivasailam Ashok‎ et al.
  • Molecular and cellular biochemistry‎
  • 2023‎

Chloroquine (CQ) has a long clinical history as an anti-malarial agent and also being used for the treatment of other infections and autoimmune diseases. Recently, this lysosomotropic agent and its derivatives are also been tested as adjuncts alongside conventional anti-cancer treatments in combinatorial therapies. However, their reported cardiotoxicity tends to raise concern over their indiscriminate use. Even though the influence of CQ and its derivatives on cardiac mitochondria is extensively studied in disease models, their impact on cardiac mitochondrial respiration under physiological conditions remains inconclusive. In this study, we aimed to evaluate the impact of CQ on cardiac mitochondrial respiration using both in-vitro and in-vivo model systems. Using high-resolution respirometry in isolated cardiac mitochondria from male C57BL/6 mice treated with intraperitoneal injection of 10 mg/kg/day of CQ for 14 days, CQ was found to impair substrate-mediated mitochondrial respiration in cardiac tissue. In an in-vitro model of H9C2 cardiomyoblasts, incubation with 50 µM of CQ for 24 h disrupted mitochondrial membrane potential, produced mitochondrial fragmentation, decreased mitochondrial respiration and induced superoxide generation. Altogether, our study results indicate that CQ has a deleterious impact on cardiac mitochondrial bioenergetics which in turn suggests that CQ treatment could be an added burden, especially in patients affected with diseases with underlying cardiac complications. As CQ is an inhibitor of the lysosomal pathway, the observed effect could be an outcome of the accumulation of dysfunctional mitochondria due to autophagy inhibition.


Ethosuximide inhibits acute histamine- and chloroquine-induced scratching behavior in mice.

  • Vinicius M Gadotti‎ et al.
  • Molecular brain‎
  • 2021‎

We have recently reported that the Cav3.2 T-type calcium channel which is well known for its key role in pain signalling, also mediates a critical function in the transmission of itch/pruritus. Here, we evaluated the effect of the clinically used anti-seizure medication ethosuximide, a well known inhibitor of T-type calcium channels, on male and female mice subjected to histaminergic- and non-histaminergic itch. When delivered intraperitoneally ethosuximide significantly reduced scratching behavior of mice of both sexes in response to subcutaneous injection of either histamine or chloroquine. When co-delivered subcutaneously together with either pruritogenic agent ethosuximide was also effective in inhibiting scratching responses in both male and female animals. Overall, our results are consistent with an important role of Cav3.2 T-type calcium channels in modulating histamine-dependent and histamine-independent itch transmission in the primary sensory pathway. Our findings also suggest that ethosuximide could be explored further as a possible therapeutic for the treatment of itch.


Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo.

  • Tao Hu‎ et al.
  • Oncology reports‎
  • 2016‎

Recently, chloroquine (CQ) has been widely used to improve the efficacy of different chemotherapy drugs to treat tumors. However, the effects of single treatment of CQ on liver cancer have not been investigated. In the present study, we examined the effects of CQ on the growth and viability of liver cancer cells in vitro and in vivo, and revealed that CQ treatment triggered G0/G1 cell cycle arrest, induced DNA damage and apoptosis in a dose- and time-dependent manner in liver cancer cells. Moreover, administration of CQ to tumor-bearing mice suppressed the tumor growth in an orthotopic xenograft model of liver cancer. These findings extend our understanding and suggest that CQ could be repositioned as a treatment option for liver cancer as a single treatment or in combination.


Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism.

  • Leticia G Marmolejo-Murillo‎ et al.
  • European journal of pharmacology‎
  • 2017‎

Kir4.1 channels have been implicated in various physiological processes, mainly in the K+ homeostasis of the central nervous system and in the control of glial function and neuronal excitability. Even though, pharmacological research of these channels is very limited. Chloroquine (CQ) is an amino quinolone derivative known to inhibit Kir2.1 and Kir6.2 channels with different action mechanism and binding site. Here, we employed patch-clamp methods, mutagenesis analysis, and molecular modeling to characterize the molecular pharmacology of Kir4.1 inhibition by CQ. We found that this drug inhibits Kir4.1 channels heterologously expressed in HEK-293 cells. CQ produced a fast-onset voltage-dependent pore-blocking effect on these channels. In inside-out patches, CQ showed notable higher potency (IC50 ≈0.5μM at +50mV) and faster onset of block when compared to whole-cell configuration (IC50 ≈7μM at +60mV). Also, CQ showed a voltage-dependent unblock with repolarization. These results suggest that the drug directly blocks Kir4.1 channels by a pore-plugging mechanism. Moreover, we found that two residues (Thr128 and Glu158), facing the central cavity and located within the transmembrane pore, are particularly important structural determinants of CQ block. This evidence was similar to what was previously reported with Kir6.2, but distinct from the interaction site (cytoplasmic pore) CQ-Kir2.1. Thus, our findings highlight the diversity of interaction sites and mechanisms that underlie amino quinolone inhibition of Kir channels.


Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.

  • Martin J Vincent‎ et al.
  • Virology journal‎
  • 2005‎

Severe acute respiratory syndrome (SARS) is caused by a newly discovered coronavirus (SARS-CoV). No effective prophylactic or post-exposure therapy is currently available.


Berbamine Reduces Chloroquine-Induced Itch in Mice through Inhibition of MrgprX1.

  • Kunhi Ryu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Chloroquine (CQ) is an antimalaria drug that has been widely used for decades. However, CQ-induced pruritus remains one of the major obstacles in CQ treatment for uncomplicated malaria. Recent studies have revealed that MrgprX1 plays an essential role in CQ-induced itch. To date, a few MrgprX1 antagonists have been discovered, but they are clinically unavailable or lack selectivity. Here, a cell-based high-throughput screening was performed to identify novel antagonists of MrgprX1, and the screening of 2543 compounds revealed two novel MrgprX1 inhibitors, berbamine and closantel. Notably, berbamine potently inhibited CQ-mediated MrgprX1 activation (IC50 = 1.6 μM) but did not alter the activity of other pruritogenic GPCRs. In addition, berbamine suppressed the CQ-mediated phosphorylation of ERK1/2. Interestingly, CQ-induced pruritus was significantly reduced by berbamine in a dose-dependent manner, but berbamine had no effect on histamine-induced, protease-activated receptors 2-activating peptide-induced, and deoxycholic acid-induced itch in mice. These results suggest that berbamine is a novel, potent, and selective antagonist of MrgprX1 and may be a potential drug candidate for the development of therapeutic agents to treat CQ-induced pruritus.


Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine.

  • Katy N Olafson‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼10(4)× less than hematin's physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.


Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes.

  • Grennady Wirjanata‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2017‎

High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum, CQ 50% inhibitory concentrations (IC50s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs (R2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC50s was observed with any of the CQRRAs in P. vivax, even in those isolates with high chloroquine IC50s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species.


Pharmacokinetics/pharmacodynamics of chloroquine and artemisinin-based combination therapy with primaquine.

  • André Daher‎ et al.
  • Malaria journal‎
  • 2019‎

Activation of hypnozoites of vivax malaria causes multiple clinical relapses, which contribute to the Plasmodium vivax burden and continuing transmission. Artemisinin-based combination therapy (ACT) is effective against blood-stage P. vivax but requires co-administration with primaquine to achieve radical cure. The therapeutic efficacy of primaquine depends on the generation of a therapeutically active metabolite via cytochrome P450 2D6 (CYP2D6). Impaired CYP2D6 metabolism has been associated with primaquine treatment failure. This study investigated the association between impaired CYP2D6 genotypes, drug-exposure to the long-acting ACT component (schizonticidal drugs) and tolerance and efficacy.


Repositioning chloroquine as antiviral prophylaxis against COVID-19: potential and challenges.

  • Raymond Chang‎ et al.
  • Drug discovery today‎
  • 2020‎

The Coronavirus Disease 2019 (COVID-19) pandemic is advancing globally, and pharmaceutical prophylaxis is one solution. Here, we propose repositioning chloroquine (CQ) as prophylaxis against COVID-19. CQ blocks viral attachment and entry to host cells and demonstrates efficacy against a variety of viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. Furthermore, CQ is safe, inexpensive, and available. Here, we review the antiviral mechanisms of CQ, its in vitro activity against coronaviruses, its pharmacokinetics (PK) and adverse effects, and why it could be more efficacious as a prophylactic rather than as a therapeutic, given the infection dynamics of SARS-CoV-2. We propose two prophylactic regimens based on efficacy and risk considerations. Although it is largely preclinical data that suggest the potential of CQ, properly planned prophylactic trials and further research are urgently needed.


Chloroquine and Hydroxychloroquine: Efficacy in the Treatment of the COVID-19.

  • Tzu-Chuan Ho‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Chloroquine (CQ) and its derivative, hydroxychloroquine (HCQ), have attracted wide attention for treating coronavirus disease 2019 (COVID-19). However, conflicting outcomes have been found in COVID-19 clinical trials after treatment with CQ or HCQ. To date, it remains uncertain whether CQ and HCQ are beneficial antiviral drugs for combating COVID-19. We performed a systematic review to depict the efficacy of CQ or HCQ for the treatment of COVID-19. The guidelines of PRISMA were used to conduct this systematic review. We searched through articles from PubMed, Web of Science and other sources that were published from 1 January 2020 to 31 October 2020. The search terms included combinations of human COVID-19, CQ, and HCQ. Eleven qualitative articles comprising of four clinical trials and seven observation studies were utilized in our systematic review. The analysis shows that CQ and HCQ do not have efficacy in treatment of patients with severe COVID-19. In addition, CQ and HCQ have caused life-threatening adverse reactions which included cardiac arrest, electrocardiogram modification, and QTc prolongation, particularly during the treatment of patients with severe COVID-19. Our systematic review suggested that CQ and HCQ are not beneficial antiviral drugs for curing patients with severe COVID-19. The treatment effect of CQ and HCQ is not only null but also causes serious side effects, which may cause potential cardiotoxicity in severe COVID-19 patients.


Lysosomotropic agents including azithromycin, chloroquine and hydroxychloroquine activate the integrated stress response.

  • Ai-Ling Tian‎ et al.
  • Cell death & disease‎
  • 2021‎

The integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu.

  • Michael H Kinzer‎ et al.
  • Malaria journal‎
  • 2010‎

Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax.


Leveraging the effects of chloroquine on resistant malaria parasites for combination therapies.

  • Ana M Untaroiu‎ et al.
  • BMC bioinformatics‎
  • 2019‎

Malaria is a major global health problem, with the Plasmodium falciparum protozoan parasite causing the most severe form of the disease. Prevalence of drug-resistant P. falciparum highlights the need to understand the biology of resistance and to identify novel combination therapies that are effective against resistant parasites. Resistance has compromised the therapeutic use of many antimalarial drugs, including chloroquine, and limited our ability to treat malaria across the world. Fortunately, chloroquine resistance comes at a fitness cost to the parasite; this can be leveraged in developing combination therapies or to reinstate use of chloroquine.


Effects of concurrent chloroquine and ethanol administration on the rat kidney morphology.

  • Abdurrahman Abdulkadir‎ et al.
  • The Pan African medical journal‎
  • 2018‎

The use of antimalarial chloroquine in malaria-endemic regions of Africa is rampant and it is not uncommon to find individuals taken the drug concurrent with alcohol. Effects of anti-malarial drug chloroquine (Chq) and ethanol (Et) combination on kidney volume and function using rat model was investigated.


Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress.

  • Baoxing Jia‎ et al.
  • Oncology letters‎
  • 2018‎

Poor prognosis and chemotherapy tolerance are the main obstacles encountered in the treatment of cholangiocarcinoma. Chloroquine (CQ), an antimalarial agent, is able to induce sustained endoplasmic reticulum (ER) stress by functioning as an autophagy inhibitor. The present study indicated that CQ had the ability to induce apoptosis in QBC939 cholangiocarcinoma cells. Furthermore, using western blotting, Hoechst staining and flow cytometry, it was demonstrated that CQ induced the apoptosis of QBC939 cholangiocarcinoma cells. Analysis by a polymerase chain reaction (PCR) array and confirmation via quantitative PCR technology indicated that the expression levels of growth arrest and DNA damage 153 [C/EBP homologous protein (CHOP)], a key molecule involved in ER stress-induced apoptosis, and its downstream death receptors were increased following CQ stimulation. It was considered that the upregulation of CHOP may mediate CQ-induced extrinsic pathways and autophagy-dependent apoptosis; therefore, the role of autophagy in cholangiocarcinoma treatment was elucidated based on the data demonstrating that CQ regulates the ER-autophagy network in tumor cells. Furthermore, it was considered that CQ may become a novel and effective strategy for the treatment of cholangiocarcinoma.


Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus.

  • Qin Liu‎ et al.
  • Cell‎
  • 2009‎

The cellular and molecular mechanisms mediating histamine-independent itch in primary sensory neurons are largely unknown. Itch induced by chloroquine (CQ) is a common side effect of this widely used antimalarial drug. Here, we show that Mrgprs, a family of G protein-coupled receptors expressed exclusively in peripheral sensory neurons, function as itch receptors. Mice lacking a cluster of Mrgpr genes display significant deficits in itch induced by CQ but not histamine. CQ directly excites sensory neurons in an Mrgpr-dependent manner. CQ specifically activates mouse MrgprA3 and human MrgprX1. Loss- and gain-of-function studies demonstrate that MrgprA3 is required for CQ responsiveness in mice. Furthermore, MrgprA3-expressing neurons respond to histamine and coexpress gastrin-releasing peptide, a peptide involved in itch sensation, and MrgprC11. Activation of these neurons with the MrgprC11-specific agonist BAM8-22 induces itch in wild-type but not mutant mice. Therefore, Mrgprs may provide molecular access to itch-selective neurons and constitute novel targets for itch therapeutics.


Inhibition of M/Kv7 Currents Contributes to Chloroquine-Induced Itch in Mice.

  • Dong Zhang‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2020‎

M/Kv7 potassium channels play a key role in regulation of neuronal excitability. Modulation of neuronal excitability of primary sensory neurons determines the itch sensation induced by a variety of itch-causing substances including chloroquine (CQ). In the present study, we demonstrate that suppression of M/Kv7 channel activity contributes to generation of itch in mice. CQ enhances excitability of the primary sensory neurons through inhibiting M/Kv7 potassium currents in a Ca2+ influx-dependent manner. Specific M/Kv7 channel opener retigabine (RTG) or tannic acid (TA) not only reverses the CQ-induced enhancement of neuronal excitability but also suppresses the CQ-induced itch behavior. Systemic application of RTG or TA also significantly inhibits the itch behavior induced by a variety of pruritogens. Taken together, our findings provide novel insight into the molecular basis of CQ-induced itch sensation in mammals that can be applied to the development of strategies to mitigate itch behavior.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: