Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 13,331 papers

High-throughput screening of human induced pluripotent stem cell-derived brain organoids.

  • Madel Durens‎ et al.
  • Journal of neuroscience methods‎
  • 2020‎

The need for scalable high-throughput screening (HTS) approaches for 3D human stem cell platforms remains a central challenge for disease modeling and drug discovery. We have developed a workflow to screen cortical organoids across platforms.


Defunct brain stem cardiovascular regulation underlies cardiovascular collapse associated with methamphetamine intoxication.

  • Faith C H Li‎ et al.
  • Journal of biomedical science‎
  • 2012‎

Intoxication from the psychostimulant methamphetamine (METH) because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism.


Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury.

  • Karla Drommelschmidt‎ et al.
  • Brain, behavior, and immunity‎
  • 2017‎

Preterm brain injury is a major cause of disability in later life, and may result in motor, cognitive and behavioural impairment for which no treatment is currently available. The aetiology is considered as multifactorial, and one underlying key player is inflammation leading to white and grey matter injury. Extracellular vesicles secreted by mesenchymal stem/stromal cells (MSC-EVs) have shown therapeutic potential in regenerative medicine. Here, we investigated the effects of MSC-EV treatment on brain microstructure and maturation, inflammatory processes and long-time outcome in a rodent model of inflammation-induced brain injury.


BASP1 labels neural stem cells in the neurogenic niches of mammalian brain.

  • Louis N Manganas‎ et al.
  • Scientific reports‎
  • 2021‎

The mechanisms responsible for determining neural stem cell fate are numerous and complex. To begin to identify the specific components involved in these processes, we generated several mouse neural stem cell (NSC) antibodies against cultured mouse embryonic neurospheres. Our immunohistochemical data showed that the NSC-6 antibody recognized NSCs in the developing and postnatal murine brains as well as in human brain organoids. Mass spectrometry revealed the identity of the NSC-6 epitope as brain abundant, membrane-attached signal protein 1 (BASP1), a signaling protein that plays a key role in neurite outgrowth and plasticity. Western blot analysis using the NSC-6 antibody demonstrated multiple BASP1 isoforms with varying degrees of expression and correlating with distinct developmental stages. Herein, we describe the expression of BASP1 in NSCs in the developing and postnatal mammalian brains and human brain organoids, and demonstrate that the NSC-6 antibody may be a useful marker of these cells.


Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells.

  • Anna Kraft‎ et al.
  • Stem cell reports‎
  • 2017‎

Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ) to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia. Using a newly established in vitro system we show that calcium waves induced in an astrocytic monolayer spread to neural stem and progenitor cells and increase their self-renewal as well as migratory behavior. These changes are due to an upregulation of the Notch signaling pathway. This introduces the concept of propagating astrocytic calcium waves transmitting brain injury signals over long distances.


Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.

  • Lixin Sun‎ et al.
  • Cancer cell‎
  • 2006‎

Stem cell factor (SCF) is overexpressed by neurons following brain injury as well as by glioma cells; however, its role in gliomagenesis remains unclear. Here, we demonstrate that SCF directly activates brain microvascular endothelial cells (ECs) in vitro and induces a potent angiogenic response in vivo. Primary human gliomas express SCF in a grade-dependent manner and induce normal neurons to express SCF in brain regions infiltrated by glioma cells, areas that colocalize with prominent angiogenesis. Downregulation of SCF inhibits tumor-mediated angiogenesis and glioma growth in vivo, whereas overexpression of SCF is associated with shorter survival in patients with malignant gliomas. Thus, the SCF/c-Kit pathway plays an important role in tumor- and normal host cell-induced angiogenesis within the brain.


Mesenchymal-Stem-Cell-Derived Extracellular Vesicles Mitigate Trained Immunity in the Brain.

  • Yiwei Feng‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Trained immunity was recently discovered in innate immune cells and shown to facilitate the clearance of pathogens at the time of occurrence of the second insult. However, it exacerbates several aspects of neuropathologies, and proper therapy is needed to rectify this abnormal immune reaction. Mesenchymal-stem cells (MSCs) exhibit a distinct capability for brain repair but are associated with safety concerns. Extracellular vesicles derived from MSCs are a promising alternative therapy. In this study, we used lipopolysaccharides to activate trained immunity in the brain and examined the therapeutic potential of MSC-derived extracellular vesicles in mitigating the trained-immunity-induced exacerbated neuropathology. We found that MSC-derived extracellular vesicles showed comparable effects to those of MSCs in the mitigation of trained immunity in the brain. Moreover, the administration of MCS-derived extracellular vesicles mitigated the aggregated inflammatory responses in the acute stage of stroke and alleviated the trained-immunity-induced increased load of amyloid-β in APP/PS1 mice. We further investigated the molecular machinery of MSC-derived extracellular vesicles and found that IL-10 is important for the mediation of the therapeutic potential of MSC-derived extracellular vesicles toward the alleviation of trained immunity. Our study indicates that extracellular-vesicle-based regenerative strategies might be useful to mitigate trained immunity in the brain.


Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms.

  • F Maekawa‎ et al.
  • Endocrinology‎
  • 2000‎

Pancreatic glucokinase (GK) is considered an important element of the glucose-sensing unit in pancreatic beta-cells. It is possible that the brain uses similar glucose-sensing units, and we employed GK immunohistochemistry and confocal microscopy to examine the anatomical distribution of GK-like immunoreactivities in the rat brain. We found strong GK-like immunoreactivities in the ependymocytes, endothelial cells, and many serotonergic neurons. In the ependymocytes, the GK-like immunoreactivity was located in the cytoplasmic area, but not in the nucleus. The GK-positive ependymocytes were found to have glucose transporter-2 (GLUT2)-like immunoreactivities on the cilia. In addition, the ependymocytes had GLUT1-like immunoreactivity on the cilia and GLUT4-like immunoreactivity densely in the cytoplasmic area and slightly in the plasma membrane. In serotonergic neurons, GK-like immunoreactivity was found in the cytoplasm and their processes. The present results raise the possibility that these GK-like immunopositive cells comprise a part of a vast glucose-sensing mechanism in the brain.


Dabrafenib and Trametinib Treatment for Erdheim-Chester Disease With Brain Stem Involvement.

  • Ahmed Al Bayati‎ et al.
  • Mayo Clinic proceedings. Innovations, quality & outcomes‎
  • 2018‎

Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis characterized by infiltration of organs by CD68+ and CD1a- lipid-laden histiocytes, including the central nervous system in more than a third of patients. Molecular analysis of ECD samples has demonstrated the prevalence of BRAF V600E mutations as high as 54%. Recently, vemurafenib became the only Food and Drug Administration-approved treatment for patients with ECD who carry the BRAF V600E mutation. However, dabrafenib has been suggested to have greater brain distribution. We describe a 44-year-old female patient treated from August of 2015 through November 2017. She presented with a 2-year history of light-headedness, fatigue, and vertigo. She was moderately dysmetric, diffusely hyperreflexic, and dysarthric in the bilateral upper and lower extremities. Her gait was wide-based. She had dysarthria and nystagmus on horizontal gaze bilaterally. Magnetic resonance imaging showed an extensive area of increased T2/fluid-attenuated inversion recovery signal in the brain stem, enhancement in the pons and midbrain, and thickening of the pituitary stalk. Positron emission tomography/computed tomography (PET/CT) and whole-body technetium Tc99m bone scintigraphy showed intense symmetrical radiotracer uptake in the distal femur and tibia bilaterally, which was biopsied. Immunohistochemistry was negative for BRAF V600E, but genomic sequencing revealed the mutation. The patient received combination therapy with dabrafenib and trametinib. Her nystagmus, dysarthria, dysmetria, and gait improved remarkably. Subsequent PET/CT and magnetic resonance imaging showed complete resolution of all radiographic evidence of disease. In this case report, we demonstrate the success of a combination therapy with dabrafenib and trametinib.


In Vivo Fate Imaging of Intracerebral Stem Cell Grafts in Mouse Brain.

  • Annette Tennstaedt‎ et al.
  • PloS one‎
  • 2015‎

We generated transgenic human neural stem cells (hNSCs) stably expressing the reporter genes Luciferase for bioluminescence imaging (BLI) and GFP for fluorescence imaging, for multimodal imaging investigations. These transgenic hNSCs were further labeled with a clinically approved perfluoropolyether to perform parallel 19F MRI studies. In vitro validation demonstrated normal cell proliferation and differentiation of the transgenic and additionally labeled hNSCs, closely the same as the wild type cell line, making them suitable for in vivo application. Labeled and unlabeled transgenic hNSCs were implanted into the striatum of mouse brain. The time profile of their cell fate after intracerebral grafting was monitored during nine days following implantation with our multimodal imaging approach, assessing both functional and anatomical condition. The 19F MRI demarcated the graft location and permitted to estimate the cell number in the graft. BLI showed a pronounce cell loss during this monitoring period, indicated by the decrease of the viability signal. The in vivo obtained cell fate results were further validated and confirmed by immunohistochemistry. We could show that the surviving cells of the graft continued to differentiate into early neurons, while the severe cell loss could be explained by an inflammatory reaction to the graft, showing the graft being surrounded by activated microglia and macrophages. These results are different from earlier cell survival studies of our group where we had implanted the identical cells into the same mouse strain but in the cortex and not in the striatum. The cortical transplanted cells did not show any loss in viability but only pronounced and continuous neuronal differentiation.


Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis.

  • Huan Liao‎ et al.
  • BioMed research international‎
  • 2017‎

Radiation-induced brain injury (RI) commonly occurs in patients who received head and neck radiotherapy. However, the mechanism of RI remains unclear. We aimed to evaluate whether pyroptosis was involved in RI and the impact of mesenchymal stem cells (MSCs) on it. BALB/c male mice (6-8 weeks) were cranially irradiated (15 Gy), and MSCs were transplanted into the bilateral cortex 2 days later; then mice were sacrificed 1 month later. Meanwhile, irradiated BV-2 microglia cells (10 Gy) were cocultured with MSCs for 24 hours. We observed that irradiated mice brains presented NLRP3 and caspase-1 activation. RT-PCR then indicated that it mainly occurred in microglia cells but not in neurons. Further, irradiated BV-2 cells showed pyroptosis and increased production of IL-18 and IL-1β. RT-PCR also demonstrated an increased expression of several inflammasome genes in irradiated BV-2 cells, including NLRP3 and AIM2. Particularly, NLRP3 was activated. Knockdown of NLRP3 resulted in decreased LDH release. Noteworthily, in vivo, MSCs transplantation alleviated radiation-induced NLRP3 and caspase-1 activation. Moreover, in vitro, MSCs could decrease caspase-1 dependent pyroptosis, NLRP3 inflammasome activation, and ROS production induced by radiation. Thus, our findings proved that microglia pyroptosis occurred in RI. MSCs may act as a potent therapeutic tool in attenuating pyroptosis.


Behavioral and Neuronal Effects of Inhaled Bromine Gas: Oxidative Brain Stem Damage.

  • Shazia Shakil‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The risk of accidental bromine (Br2) exposure to the public has increased due to its enhanced industrial use. Inhaled Br2 damages the lungs and the heart; however, adverse effects on the brain are unknown. In this study, we examined the neurological effects of inhaled Br2 in Sprague Dawley rats. Rats were exposed to Br2 (600 ppm for 45 min) and transferred to room air and cage behavior, and levels of glial fibrillary acidic protein (GFAP) in plasma were examined at various time intervals. Bromine exposure resulted in abnormal cage behavior such as head hitting, biting and aggression, hypervigilance, and hyperactivity. An increase in plasma GFAP and brain 4-hydroxynonenal (4-HNE) content also was observed in the exposed animals. Acute and delayed sympathetic nervous system activation was also evaluated by assessing the expression of catecholamine biosynthesizing enzymes, tryptophan hydroxylase (TrpH1 and TrpH2), and tyrosine hydroxylase (TyrH), along with an assessment of catecholamines and their metabolites. TyrH was found to be increased in a time-dependent manner. TrpH1 and TrpH2 were significantly decreased upon Br2 exposure in the brainstem. The neurotransmitter content evaluation indicated an increase in 5-HT and dopamine at early timepoints after exposure; however, other metabolites were not significantly altered. Taken together, our results predict brain damage and autonomic dysfunction upon Br2 exposure.


Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix.

  • Disha Sood‎ et al.
  • Scientific reports‎
  • 2019‎

Brain extracellular matrix (ECM) is often overlooked in vitro brain tissue models, despite its instructive roles during development. Using developmental stage-sourced brain ECM in reproducible 3D bioengineered culture systems, we demonstrate enhanced functional differentiation of human induced neural stem cells (hiNSCs) into healthy neurons and astrocytes. Particularly, fetal brain tissue-derived ECM supported long-term maintenance of differentiated neurons, demonstrated by morphology, gene expression and secretome profiling. Astrocytes were evident within the second month of differentiation, and reactive astrogliosis was inhibited in brain ECM-enriched cultures when compared to unsupplemented cultures. Functional maturation of the differentiated hiNSCs within fetal ECM-enriched cultures was confirmed by calcium signaling and spectral/cluster analysis. Additionally, the study identified native biochemical cues in decellularized ECM with notable comparisons between fetal and adult brain-derived ECMs. The development of novel brain-specific biomaterials for generating mature in vitro brain models provides an important path forward for interrogation of neuron-glia interactions.


Stem-cell-derived human microglia transplanted into mouse brain to study human disease.

  • Nicola Fattorelli‎ et al.
  • Nature protocols‎
  • 2021‎

Microglia are critically involved in complex neurological disorders with a strong genetic component, such as Alzheimer's disease, Parkinson's disease and frontotemporal dementia. Although mouse microglia can recapitulate aspects of human microglia physiology, they do not fully capture the human genetic aspects of disease and do not reproduce all human cell states. Primary cultures of human microglia or microglia derived from human induced pluripotent stem cells (PSCs) are difficult to maintain in brain-relevant cell states in vitro. Here we describe MIGRATE (microglia in vitro generation refined for advanced transplantation experiments, which provides a combined in vitro differentiation and in vivo xenotransplantation protocol to study human microglia in the context of the mouse brain. This article details an accurate, step-by-step workflow that includes in vitro microglia differentiation from human PSCs, transplantation into the mouse brain and quantitative analysis of engraftment. Compared to current differentiation and xenotransplantation protocols, we present an optimized, faster and more efficient approach that yields up to 80% chimerism. To quantitatively assess engraftment efficiency by flow cytometry, access to specialized flow cytometry is required. Alternatively, the percentage of chimerism can be estimated by standard immunohistochemical analysis. The MIGRATE protocol takes ~40 d to complete, from culturing PSCs to engraftment efficiency assessment.


PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells.

  • W Chearwae‎ et al.
  • British journal of cancer‎
  • 2008‎

Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARgamma) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARgamma agonist, 15-Deoxy-Delta(12,14)-Prostaglandin J(2) (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARgamma in gliosphere cells. These findings demonstrate that PPARgamma agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour.


Intravenously Injected Mesenchymal Stem Cells Penetrate the Brain and Treat Inflammation-Induced Brain Damage and Memory Impairment in Mice.

  • Olena Lykhmus‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Neuroinflammation is regarded as one of the pathogenic factors of Alzheimer disease (AD). Previously, we showed that mice regularly injected with bacterial lipopolysaccharide (LPS) possessed the AD-like symptoms like episodic memory decline, elevated amounts of amyloid beta (Aβ) peptide (1-42), and decreased levels of nicotinic acetylcholine receptors (nAChRs) in the brain. The use of mesenchymal stem cells (MSCs), which can differentiate into multiple cell types, including neurons, is an attractive idea of regenerative medicine, in particular, for neurodegenerative disorders like AD. In the present study, we aimed to investigate whether pathogenic effect of LPS on the brain and behavior of mice can be prevented or treated by injection of MSCs or MSC-produced soluble factors. Fluorescently-labeled MSCs, injected intravenously, were found in the brain blood vessels of LPS-treated mice. Mice co-injected with LPS and MSCs did not demonstrate episodic memory impairment, Aβ (1-42) accumulation, and nAChR decrease in the brain and brain mitochondria. Their mitochondria released less cytochrome c under the effect of Ca2+ compared to mitochondria of LPS-only-treated mice. Moreover, MSCs could reverse the pathogenic symptoms developed 3 weeks after LPS injection. Cultured MSCs produced IL-6 in response to LPS and MSCs effect in vivo was accompanied by additional stimulation of both micro- and macroglia. Xenogeneic (human) MSCs were almost as efficient as allogeneic (mouse) ones and regular injections of human MSC-conditioned medium also produced positive effect. These data allow suggesting MSCs as a potential therapeutic tool to cure neuroinflammation-related cognitive pathology.


KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration.

  • Aurelie Carabalona‎ et al.
  • Nature neuroscience‎
  • 2016‎

Brain neural stem cells (radial glial progenitors, RGPs) undergo a mysterious form of cell cycle-entrained interkinetic nuclear migration (INM) that is driven apically by cytoplasmic dynein and basally by the kinesin KIF1A, which has recently been implicated in human brain developmental disease. To understand the consequences of altered basal INM and the roles of KIF1A in disease, we performed constitutive and conditional RNAi and expressed mutant KIF1A in E16 to P7 rat RGPs and neurons. RGPs inhibited in basal INM still showed normal cell cycle progression, although neurogenic divisions were severely reduced. Postmitotic neuronal migration was independently disrupted at the multipolar stage and accompanied by premature ectopic expression of neuronal differentiation markers. Similar effects were unexpectedly observed throughout the layer of surrounding control cells, mimicked by Bdnf (brain-derived neurotrophic factor) or Dcx RNAi, and rescued by BDNF application. These results identify sequential and independent roles for KIF1A and provide an important new approach for reversing the effects of human disease.


Human Adipose Tissue-Derived Mesenchymal Stem Cells Target Brain Tumor-Initiating Cells.

  • Seung Ah Choi‎ et al.
  • PloS one‎
  • 2015‎

In neuro-oncology, the biology of neural stem cells (NSCs) has been pursued in two ways: as tumor-initiating cells (TICs) and as a potential cell-based vehicle for gene therapy. NSCs as well as mesenchymal stem cells (MSCs) have been reported to possess tumor tropism capacities. However, there is little data on the migratory capacity of MSCs toward brain tumor-initiating cells (BTICs). This study focuses on the ability of human adipose tissue derived MSCs (hAT-MSCs) to target BTICs and their crosstalk in the microenvironment. BTICs were isolated from three different types of brain tumors. The migration capacities of hAT-MSCs toward BTICs were examined using an in vitro migration assay and in vivo bioluminescence imaging analysis. To investigate the crosstalk between hAT-MSCs and BTICs, we analyzed the mRNA expression patterns of cyto-chemokine receptors by RT-qPCR and the protein level of their ligands in co-cultured medium. The candidate cyto-chemokine receptors were selectively inhibited using siRNAs. Both in vitro and in vivo experiments showed that hAT-MSCs possess migratory abilities to target BTICs isolated from medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT) and glioblastoma. Different types of cyto-chemokines are involved in the crosstalk between hAT-MSCs and BTICs (medulloblastoma and AT/RT: CXCR4/SDF-1, CCR5/RANTES, IL6R/IL-6 and IL8R/IL8; glioblastoma: CXCR4/SDF-1, IL6R/IL-6, IL8R/IL-8 and IGF1R/IGF-1). Our findings demonstrated the migratory ability of hAT-MSCs for BTICs, implying the potential use of MSCs as a delivery vehicle for gene therapy. This study also confirmed the expression of hAT-MSCs cytokine receptors and the BTIC ligands that play roles in their crosstalk.


Mesenchymal Stem Cells Provide Neuroprotection by Regulating Heat Stroke-Induced Brain Inflammation.

  • Yu Zhang‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Heat stroke (HS) is the most acute type of heat illness accompanied with serious central nervous system (CNS) dysfunction. Despite the pathological process being clearly studied, effective treatment is deficient. Currently, mesenchymal stem cells (MSCs) have been demonstrated to have neuroprotective effects as there are no old ones. Thus, the purpose of the present study was to explore the neuroprotective effects and mechanisms of MSCs against HS-induced CNS injury. HS in rat models was induced by a high-temperature environment and treated with MSCs via the tail vein. The results demonstrated that MSC injection significantly reduced the mortality and inhibited the circulation inflammatory response. Moreover, the HS-induced neurological deficit and neuronic damage of the hippocampus were significantly ameliorated by MSC administration. In addition, MSC administration significantly restored astrocytes and inhibited cerebral inflammatory response. These results indicate that MSC infusion has therapeutic effects in HS of rats by regulating the circulation and cerebral inflammatory response. Moreover, astrocytes increased in MSC-treated HS rats when compared with the untreated ones. This may suggest a potential mechanism for HS prevention and therapy through MSC administration.


Brain-targeted stem cell gene therapy corrects mucopolysaccharidosis type II via multiple mechanisms.

  • Hélène Fe Gleitz‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

The pediatric lysosomal storage disorder mucopolysaccharidosis type II is caused by mutations in IDS, resulting in accumulation of heparan and dermatan sulfate, causing severe neurodegeneration, skeletal disease, and cardiorespiratory disease. Most patients manifest with cognitive symptoms, which cannot be treated with enzyme replacement therapy, as native IDS does not cross the blood-brain barrier. We tested a brain-targeted hematopoietic stem cell gene therapy approach using lentiviral IDS fused to ApoEII (IDS.ApoEII) compared to a lentivirus expressing normal IDS or a normal bone marrow transplant. In mucopolysaccharidosis II mice, all treatments corrected peripheral disease, but only IDS.ApoEII mediated complete normalization of brain pathology and behavior, providing significantly enhanced correction compared to IDS. A normal bone marrow transplant achieved no brain correction. Whilst corrected macrophages traffic to the brain, secreting IDS/IDS.ApoEII enzyme for cross-correction, IDS.ApoEII was additionally more active in plasma and was taken up and transcytosed across brain endothelia significantly better than IDS via both heparan sulfate/ApoE-dependent receptors and mannose-6-phosphate receptors. Brain-targeted hematopoietic stem cell gene therapy provides a promising therapy for MPS II patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: