Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 178 papers

Folic acid supplementation delays atherosclerotic lesion development in apoE-deficient mice.

  • Ricardo Carnicer‎ et al.
  • Life sciences‎
  • 2007‎

Folic acid is a vitamin that when used as a dietary supplementation can improve endothelial function. To assess the effect of folic acid on the development of atherosclerosis, male apolipoprotein E-deficient mice fed a standard chow diet received either water (control group) or an aqueous solution of folic acid that provided a dose of 75 microg/kg/day, for ten weeks. At the time of sacrifice, blood was drawn and the heart removed. The study measured plasma homocysteine, lipids, lipoproteins, low-density lipoprotein (LDL) oxidation, isoprostane, paraoxonase, and apolipoproteins, and aortic atherosclerotic areas. In folic acid-treated animals, total cholesterol, mainly carried in very low-density and low-density lipoproteins, increased significantly, and homocysteine, HDL cholesterol, paraoxonase, and triglyceride levels did not change significantly. Plasma isoprostane and apolipoprotein (apo) B levels decreased. The resistance of LDL to oxidization and plasma apoA-I and apoA-IV levels increased with a concomitant decrease in the area of atherosclerotic lesions. The administration of folic acid decreased atherosclerotic lesions independently of plasma homocysteine and cholesterol levels, but was associated with plasma levels of apolipoproteins A-I, A-IV and B, and decreased oxidative stress.


Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis.

  • Jing Chen‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS.


The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle.

  • Tyler F Daniels‎ et al.
  • PloS one‎
  • 2010‎

In the present study, thirteen genes involved in the reverse cholesterol transport (RCT) pathway were investigated for their associations with three fat depositions, eight fatty acid compositions and two growth-related phenotypes in a Wagyu x Limousin reference population, including 6 F(1) bulls, 113 F(1) dams, and 246 F(2) progeny. A total of 37 amplicons were used to screen single nucleotide polymorphisms (SNPs) on 6 F(1) bulls. Among 36 SNPs detected in 11 of these 13 genes, 19 were selected for genotyping by the Sequenom assay design on all F(2) progeny. Single-marker analysis revealed seven SNPs in ATP binding cassette A1, apolipoproteins A1, B and E, phospholipid transfer protein and paraoxinase 1 genes significantly associated with nine phenotypes (P<0.05). Previously, we reported genetic networks associated with 19 complex phenotypes based on a total of 138 genetic polymorphisms derived from 71 known functional genes. Therefore, after Bonferroni correction, these significant (adjusted P<0.05) and suggestive (adjusted P<0.10) associations were then used to identify genetic networks related to the RCT pathway. Multiple-marker analysis suggested possible genetic networks involving the RCT pathway for kidney-pelvic-heart fat percentage, rib-eye area, and subcutaneous fat depth phenotypes with markers derived from paraoxinase 1, apolipoproteins A1 and E, respectively. The present study confirmed that genes involved in cholesterol homeostasis are useful targets for investigating obesity in humans as well as for improving meat quality phenotypes in a livestock production.


Modulatory role of PYY in transport and metabolism of cholesterol in intestinal epithelial cells.

  • Emilie Grenier‎ et al.
  • PloS one‎
  • 2012‎

Gastrointestinal peptides are involved in modulating appetite. Other biological functions attributed to them include the regulation of lipid homeostasis. However, data concerning PYY remain fragmentary. The objectives of the study were: (i) To determine the effect of PYY on intestinal transport and synthesis of cholesterol, the biogenesis of apolipoproteins (apos) and assembly of lipoproteins and (ii) To analyze whether the effects of PYY are similar according to whether cells are exposed to PYY on apical or basolateral surface.


Amyloid-β sequester proteins as blood-based biomarkers of cognitive decline.

  • Kazuhiko Uchida‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2015‎

There are no blood-based biomarkers for cognitive decline in aging, or mild cognitive impairment (MCI) and Alzheimer's disease (AD). Cumulative evidence suggests that apolipoproteins, complement system, and transthyretin are involved in AD pathogenesis by sequestration of amyloid β. However, there is no clinical study to assess the utility of "sequester proteins" in risk assessment and/or diagnosis of MCI and AD.


iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis.

  • Magdalena Luczak‎ et al.
  • Scientific reports‎
  • 2016‎

Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level of apolipoprotein AIV, adiponectin, or apolipoprotein C, despite their anti-atherogenic properties, was not associated with a decrease in cardiovascular event risk in CKD patients. The presence of the distinctive pattern of apolipoproteins demonstrated in this study may suggest that lipid abnormalities in CKD are characterized by more qualitative abnormalities and may be related to HDL function rather than HDL deficiency.


Anti-infective activity of apolipoprotein domain derived peptides in vitro: identification of novel antimicrobial peptides related to apolipoprotein B with anti-HIV activity.

  • Bridie A Kelly‎ et al.
  • BMC immunology‎
  • 2010‎

Previous reports have shown that peptides derived from the apolipoprotein E receptor binding region and the amphipathic alpha-helical domains of apolipoprotein AI have broad anti-infective activity and antiviral activity respectively. Lipoproteins and viruses share a similar cell biological niche, being of overlapping size and displaying similar interactions with mammalian cells and receptors, which may have led to other antiviral sequences arising within apolipoproteins, in addition to those previously reported. We therefore designed a series of peptides based around either apolipoprotein receptor binding regions, or amphipathic alpha-helical domains, and tested these for antiviral and antibacterial activity.


Apolipoprotein C3 facilitates internalization of cationic lipid nanoparticles into bone marrow-derived mouse mast cells.

  • Syed Benazir Alam‎ et al.
  • Scientific reports‎
  • 2023‎

Mast cells (MCs), are hematopoetically-derived secretory immune cells that release preformed as well as de novo synthesized inflammatory mediators in response to activation by several stimuli. Based on their role in inflammatory responses, particularly in the lung and skin, MCs provide an effective target for anti-inflammatory therapeutic strategies. Drug-delivery of lipophilic payloads to MCs can be challenging due to their functionally distinct intracellular structures. In the present study, pH-sensitive cationic lipid-based nanoparticles (LNPs) composed of DODMA, DODAP or DOTAP lipids that encapsulated a GFP or eGFP plasmid were constructed using non-turbulent microfluidic mixing. This approach achieved up to 75-92% encapsulation efficiency. Dynamic light scattering revealed a uniformly sized and homogeneous dispersion of LNPs. To promote cellular internalization, LNPs were complexed with apolipoproteins, amphipathic proteins capable of binding lipids and facilitating their transport into cells. Cryo-TEM analysis showed that LNP structure was differentially modified when associated with different types of apolipoproteins. LNP preparations made up of DODMA or DODMA, DODAP and DOTAP lipids were coated with seven apolipoproteins (Apo A1, B, C3, D, E2, E4 and H). Differentiated bone-marrow derived mouse mast cells (BMMCs) were exposed to apolipoprotein-LNP and internalization was measured using flow cytometry. Out of all the apolipoproteins tested, ApoC3 most efficiently facilitated cellular internalization of the LNP into BMMCs as determined by GFP fluorescence using flow cytometry. These effects were confirmed in a less differentiated but also interleukin-3-dependent model of mouse mast cells, MC/9. ApoC3-LNP enhanced internalization by BMMC in a concentration-dependent manner and this was significantly increased when BMMC were pre-treated with inhibitors of actin polymerization, suggesting a dependence on intracellular shuttling. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) decreased ApoC3-LNP internalization and reduced the expression of apolipoprotein E receptor 2 (ApoER2), suggesting that ApoC3-LNP binding to ApoER2 may be responsible for its enhanced internalization. Furthermore, ApoC3 fails to facilitate internalization of LNPs in Lrp8-/- KO BMMC that do not express ApoER2 on their cell surface. Altogether, our studies reveal an important role of ApoC3 in facilitating internalization of cationic LNPs into MCs.


The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D.

  • Lucy Liu‎ et al.
  • Cell metabolism‎
  • 2017‎

Elevated reactive oxygen species (ROS) induce the formation of lipids in neurons that are transferred to glia, where they form lipid droplets (LDs). We show that glial and neuronal monocarboxylate transporters (MCTs), fatty acid transport proteins (FATPs), and apolipoproteins are critical for glial LD formation. MCTs enable glia to secrete and neurons to absorb lactate, which is converted to pyruvate and acetyl-CoA in neurons. Lactate metabolites provide a substrate for synthesis of fatty acids, which are processed and transferred to glia by FATP and apolipoproteins. In the presence of high ROS, inhibiting lactate transfer or lowering FATP or apolipoprotein levels decreases glial LD accumulation in flies and in primary mouse glial-neuronal cultures. We show that human APOE can substitute for a fly glial apolipoprotein and that APOE4, an Alzheimer's disease susceptibility allele, is impaired in lipid transport and promotes neurodegeneration, providing insights into disease mechanisms.


Understanding the Lipid and Protein Corona Formation on Different Sized Polymeric Nanoparticles.

  • Tânia Lima‎ et al.
  • Scientific reports‎
  • 2020‎

When in contact with biological fluids, nanoparticles dynamically absorb biomolecules like proteins and lipids onto their surface, forming a "corona". This biocorona is a dynamic and complex structure that determines how host cells respond to nanoparticles. Despite the common use of mouse models in pre-clinical and toxicological experiments, the impact of corona formed in mouse serum on the biophysical and biological properties of different size NP has not been thoroughly explored. Furthering the knowledge on the corona formed on NP exposed to mouse serum proteins can help in understanding what role it might have in in vivo studies at systemic, tissue, and cellular levels. To investigate biocorona formation, different sized polystyrene NP were exposed to mouse serum. Our data show a size- and time-dependent protein and lipid corona formation. Several proteins were identified and apolipoproteins were by far the most common group on the NPs surfaces. Moreover, we observed that cholesterol and triglycerides effectively bind to NP emphasizing that proteins are not the only biomolecules with high-affinity binding to nanomaterial surfaces. These results highlight that further knowledge on NP interactions with mouse serum is necessary regarding the common use of this model to predict the in vivo efficiency of NP.


Estimating the Effect of Aerobic Exercise Training on Novel Lipid Biomarkers: A Systematic Review and Multivariate Meta-Analysis of Randomized Controlled Trials.

  • Gina Wood‎ et al.
  • Sports medicine (Auckland, N.Z.)‎
  • 2023‎

Aerobic exercise training (AET) prescribed as lipid management treatment positively affects the standard lipid profile and reduces cardiovascular disease (CVD) risk. Apolipoproteins, lipid and apolipoprotein ratios, and lipoprotein sub-fractions may more effectively predict CVD risk than the standard lipid profile but an AET response in these biomarkers has not been established.


Sortilin levels correlate with major cardiovascular events of diabetic patients with peripheral artery disease following revascularization: a prospective study.

  • Federico Biscetti‎ et al.
  • Cardiovascular diabetology‎
  • 2020‎

Peripheral artery disease (PAD) represents one of the most relevant vascular complications of type 2 diabetes mellitus (T2DM). Moreover, T2DM patients suffering from PAD have an increased risk of major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Sortilin, a protein involved in apolipoproteins trafficking, is associated with lower limb PAD in T2DM patients.


Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue.

  • Jie Qu‎ et al.
  • Scientific reports‎
  • 2021‎

Apolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.


Associations between a polymorphism in the pleiotropic GCKR and Age-related phenotypes: the HALCyon programme.

  • Tamuno Alfred‎ et al.
  • PloS one‎
  • 2013‎

The glucokinase regulatory protein encoded by GCKR plays an important role in glucose metabolism and a single nucleotide polymorphism (SNP) rs1260326 (P446L) in the gene has been associated with several age-related biomarkers, including triglycerides, glucose, insulin and apolipoproteins. However, associations between SNPs in the gene and other ageing phenotypes such as cognitive and physical capability have not been reported.


The Influence of Body Fat and Lean Mass on HbA1c and Lipid Profile in Children and Adolescents with Type 1 Diabetes Mellitus.

  • Thais Menegucci‎ et al.
  • Diseases (Basel, Switzerland)‎
  • 2023‎

Glycated hemoglobin (HbA1c) is used to assess glycemic control in Type 1 diabetes (DM1) patients. Apolipoproteins play an essential role in DM1 pathophysiology and may be associated with complications and HbA1c. This cross-sectional observational study of 81 children and adolescents of both sexes diagnosed with DM1 investigated the relationship between body fat distribution and lean mass with HbA1C and apolipoprotein values, analyzing biochemical and body composition measurements. A Shapiro-Wilk test with Lilliefors correction, a non-parametric Mann-Whitney test, and others were used with a significance level of 5%. The sample had a diagnosis time of 4.32 years and high blood glucose levels (mean 178.19 mg/dL) and HbA1c (mean 8.57%). Subjects also had a moderate level of adiposity, as indicated by arm and thigh fat areas. The study also found significant differences in the distribution of patients concerning levels of apolipoproteins A and B, with a smaller proportion of patients having undesirable levels. Finally, the study found a significant difference in the distribution of patients with estimated cardiovascular risk based on the ApoB/ApoA-I ratio. Conclusively, visceral fat in children and adolescents with DM1 may increase the risk of DM1 long-term complications owing to its association with elevated HbA1C and apolipoprotein values.


Binding of adenosine derivatives to carrier proteins may reduce their antiplatelet activity.

  • Joanna Wzorek‎ et al.
  • Biochemical pharmacology‎
  • 2020‎

Adenosine analogues have high affinity and selectivity for adenosine receptors (AR), and exhibit anti-platelet activity. Plasma proteins play an important role in the regulation of platelet function and may influence the action of anti-platelet compounds. Little is known about the interactions of AR agonists with plasma proteins. This study investigates the interplay between AR agonists and plasma proteins and the consequences of those interactions. Surface plasmon resonance was employed together with molecular docking study to determine the binding kinetics of four selected ARagonists (PSB0777, Cl-Ado, MRE0094, UK432097) to several carrier proteins and to clarify the nature of these interactions. The influence of a whole plasma and of some plasma components on the effectiveness of ARagonists in the inhibition of platelet function was assessed by flow cytometry (platelet activation) and ELISA (platelet adhesion). Plasma proteins remarkably diminished the effectiveness of ARagonists in inhibiting platelet activation and adhesion in vitro. ARagonists were found to strongly bind to human serum albumin (HSA) and the protein components of lipoproteins - apolipoproteins; HSA was essential for the binding of water-soluble PSB0777, whereas apolipoproteins were needed for interactions with poorly-water soluble compounds such as UK432097 and MRE0094. In addition, HSA was shown to significantly reduce the effectiveness of PSB0777 in inhibiting ADP-induced platelet activation. In conclusion, HSA and lipoproteins are important carriers for ARagonists, which can affect pharmacodynamics of ARagonists used as platelet inhibitors.


Effects of exercise on reverse cholesterol transport: A systemized narrative review of animal studies.

  • Saleh Rahmati-Ahmadabad‎ et al.
  • Life sciences‎
  • 2019‎

Reverse Cholesterol Transport (RCTr) is the mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell formation and the development of atherosclerosis. Exercise affects RCTr, by influencing high-density lipoprotein cholesterol (HDL) through remodeling and by promoting hepatobiliary sterol excretion. The objectives of this systematized review of animal studies is to summarize the literature and provide an overview of the effects of chronic exercise (at least two weeks) on apolipoproteins (Apo A-I, Apo-E), Paraoxonase-1 (PON1), ATP-binding cassette transporters (ABCA1, ABCG1, ABCG4, ABCG5, ABCG8), scavenger receptor class B type I (SR-BI), cholesteryl ester transfer protein (CETP), low-density lipoprotein receptor (LDLr) and cholesterol 7 alpha-hydroxylase (CYP7A1) and Niemann-Pick C1-like 1 (NPC1L1).


Proteomic analysis of plasma-purified VLDL, LDL, and HDL fractions from atherosclerotic patients undergoing carotid endarterectomy: identification of serum amyloid A as a potential marker.

  • Antonio J Lepedda‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2013‎

Apolipoproteins are very heterogeneous protein family, implicated in plasma lipoprotein structural stabilization, lipid metabolism, inflammation, or immunity. Obtaining detailed information on apolipoprotein composition and structure may contribute to elucidating lipoprotein roles in atherogenesis and to developing new therapeutic strategies for the treatment of lipoprotein-associated disorders. This study aimed at developing a comprehensive method for characterizing the apolipoprotein component of plasma VLDL, LDL, and HDL fractions from patients undergoing carotid endarterectomy, by means of two-dimensional electrophoresis (2-DE) coupled with Mass Spectrometry analysis, useful for identifying potential markers of plaque presence and vulnerability. The adopted method allowed obtaining reproducible 2-DE maps of exchangeable apolipoproteins from VLDL, LDL, and HDL. Twenty-three protein isoforms were identified by peptide mass fingerprinting analysis. Differential proteomic analysis allowed for identifying increased levels of acute-phase serum amyloid A protein (AP SAA) in all lipoprotein fractions, especially in LDL from atherosclerotic patients. Results have been confirmed by western blotting analysis on each lipoprotein fraction using apo AI levels for data normalization. The higher levels of AP SAA found in patients suggest a role of LDL as AP SAA carrier into the subendothelial space of artery wall, where AP SAA accumulates and may exert noxious effects.


Emerging risk factors for cardiovascular diseases: Indian context.

  • Sushil Gupta‎ et al.
  • Indian journal of endocrinology and metabolism‎
  • 2013‎

Cardiovascular disease (CVD) is globally considered as the leading cause of death with 80% of CVD related deaths being reported from low and middle income countries like India. The relatively early onset age of CVD in India in comparison to Western countries also implies that most productive ages of the patient's life are lost fighting the disease. Conventional cardiovascular risk is attributed to lifestyle changes and altered metabolic activity. This forms the basis of a 10-year risk prediction score inspired by the Framingham study. Since South Asians display considerable heterogeneity in risk factors as compared to developed countries, there is a need to identify risk factors which would not only help in primary prevention but also prevent their recurrence. We reviewed published data on novel risk factors and their potential to identify cardiovascular risk at an early stage, with special emphasis on the Indian population. Emerging risk factors were reviewed to identify their potential to prevent CVD progression independently as well as in association with other cardiovascular risk factors. The most commonly studied emerging cardiovascular risk factors included coronary artery calcium score, lipoprotein (a), apolipoproteins, homocysteine, thrombosis markers like fibrinogen, and plasminogen activator inhibitor 1, carotid intima-media thickness, genotypic variations, non-alcoholic fatty liver disease, C-reactive protein, platelets, and birth weight levels. Nonetheless, more studies on large sample size can ascertain the utility of these risk factors in estimation and analysis of cardiovascular risk especially in the Indian context.


Understanding Dengue Virus Capsid Protein Interaction with Key Biological Targets.

  • André F Faustino‎ et al.
  • Scientific reports‎
  • 2015‎

Dengue virus (DENV) causes over 500,000 hospitalizations and 20,000 deaths worldwide every year. Dengue epidemics now reach temperate regions due to globalization of trade and travel and climate changes. Currently, there are no successful therapeutic or preventive approaches. We previously developed a peptide drug lead, pep14-23, that inhibits the biologically relevant interaction of DENV capsid (C) protein with lipid droplets (LDs). Surprisingly, pep14-23 also inhibits DENV C interaction with very low-density lipoproteins (VLDL). We thus investigated the similarity between the proposed DENV C molecular targets in LDs and VLDL, respectively, the proteins perilipin 3 (PLIN3) and apolipoprotein E (APOE). APOE N-terminal and PLIN3 C-terminal regions are remarkably similar, namely APOE α-helix 4 (APOEα4) and PLIN3 α-helix 5 (PLIN3α5) sequences, which are also highly superimposable structurally. Interestingly, APOE α-helical N-terminal sequence and structure superimposes with DENV C α-helices α1 and α2. Moreover, the DENV C hydrophobic cleft can accommodate the structurally analogous APOEα4 and PLIN3α5 helical regions. Mirroring DENV C-LDs interaction (previously shown experimentally to require PLIN3), we experimentally demonstrated that DENV C-VLDL interaction requires APOE. Thus, the results fit well with previous data and suggest future drug development strategies targeting the above mentioned α-helical structures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: