2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 74 papers out of 74 papers

Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney.

  • Jens H Westhoff‎ et al.
  • PloS one‎
  • 2013‎

The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.


Biotransformation profiles from a cohort of chronic fatigue women in response to a hepatic detoxification challenge.

  • Elardus Erasmus‎ et al.
  • PloS one‎
  • 2019‎

Chronic fatigue, in its various manifestations, frequently co-occur with pain, sleep disturbances and depression and is a non-communicable condition which is rapidly becoming endemic worldwide. However, it is handicapped by a lack of objective definitions and diagnostic measures. This has prompted the World Health Organization to develop an international instrument whose intended purpose is to improve quality of life (QOL), with energy and fatigue as one domain of focus. To complement this objective, the interface between detoxification, the exposome, and xenobiotic-sensing by nuclear receptors that mediate induction of biotransformation-linked genes, is stimulating renewed attention to a rational development of strategies to identify the metabolic profiles in complex multifactorial conditions like fatigue. Here we present results from a seven-year study of a cohort of 576 female patients suffering from low to high levels of chronic fatigue, in which phase I and phase II biotransformation was assessed. The biotransformation profiles used were based on hepatic detoxification challenge tests through oral caffeine, acetaminophen and acetylsalicylic acid ingestion coupled with oxidative stress analyses. The interventions indicated normal phase I but increased phase II glucuronidation and glycination conjugation. Complementarity was indicated between a fatigue scale, medical symptoms and associated energy-related parameters by application of Chi-square Automatic Interaction Detector (CHAID) analysis. The presented study provides a cluster of data from which we propose that multidisciplinary inputs from the combination of a fatigue scale, medical symptoms and biotransformation profiles provide the rationale for the development of a comprehensive laboratory instrument for improved diagnostics and personalized interventions in patients with chronic fatigue with a view to improving their QOL.


Increased liver-specific proteins in circulating extracellular vesicles as potential biomarkers for drug- and alcohol-induced liver injury.

  • Young-Eun Cho‎ et al.
  • PloS one‎
  • 2017‎

Drug- and alcohol-induced liver injury are a leading cause of liver failure and transplantation. Emerging evidence suggests that extracellular vesicles (EVs) are a source of biomarkers because they contain unique proteins reflecting the identity and tissue-specific origin of the EV proteins. This study aimed to determine whether potentially hepatotoxic agents, such as acetaminophen (APAP) and binge alcohol, can increase the amounts of circulating EVs and evaluate liver-specific EV proteins as potential biomarkers for liver injury. The circulating EVs, isolated from plasma of APAP-exposed, ethanol-fed mice, or alcoholic hepatitis patients versus normal control counterparts, were characterized by proteomics and biochemical methods. Liver specific EV proteins were analyzed by immunoblots and ELISA. The amounts of total and liver-specific proteins in circulating EVs from APAP-treated mice significantly increased in a dose- and time-dependent manner. Proteomic analysis of EVs from APAP-exposed mice revealed that the amounts of liver-specific and/or hepatotoxic proteins were increased compared to those of controls. Additionally, the increased protein amounts in EVs following APAP exposure returned to basal levels when mice were treated with N-acetylcysteine or glutathione. Similar results of increased amounts and liver-specific proteins in circulating EVs were also observed in mice exposed to hepatotoxic doses of thioacetamide or d-galactosamine but not by non-hepatotoxic penicillin or myotoxic bupivacaine. Additionally, binge ethanol exposure significantly elevated liver-specific proteins in circulating EVs from mice and alcoholics with alcoholic hepatitis, compared to control counterparts. These results indicate that circulating EVs in drug- and alcohol-mediated hepatic injury contain liver-specific proteins that could serve as specific biomarkers for hepatotoxicity.


Identification of modulators of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) in a mouse liver gene expression compendium.

  • Keiyu Oshida‎ et al.
  • PloS one‎
  • 2015‎

The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher's test (p-value ≤ 10(-4))) was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPARα were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPARα, and 3) identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical-induced PPARα activity.


P2X7 Cell Death Receptor Activation and Mitochondrial Impairment in Oxaliplatin-Induced Apoptosis and Neuronal Injury: Cellular Mechanisms and In Vivo Approach.

  • France Massicot‎ et al.
  • PloS one‎
  • 2013‎

Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2-200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.


4-Phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression.

  • Rachel E Carlisle‎ et al.
  • PloS one‎
  • 2014‎

Different forms of acute kidney injury (AKI) have been associated with endoplasmic reticulum (ER) stress; these include AKI caused by acetaminophen, antibiotics, cisplatin, and radiocontrast. Tunicamycin (TM) is a nucleoside antibiotic known to induce ER stress and is a commonly used inducer of AKI. 4-phenylbutyrate (4-PBA) is an FDA approved substance used in children who suffer from urea cycle disorders. 4-PBA acts as an ER stress inhibitor by aiding in protein folding at the molecular level and preventing misfolded protein aggregation. The main objective of this study was to determine if 4-PBA could protect from AKI induced by ER stress, as typified by the TM-model, and what mechanism(s) of 4-PBA's action were responsible for protection. C57BL/6 mice were treated with saline, TM or TM plus 4-PBA. 4-PBA partially protected the anatomic segment most susceptible to damage, the outer medullary stripe, from TM-induced AKI. In vitro work showed that 4-PBA protected human proximal tubular cells from apoptosis and TM-induced CHOP expression, an ER stress inducible proapoptotic gene. Further, immunofluorescent staining in the animal model found similar protection by 4-PBA from CHOP nuclear translocation in the tubular epithelium of the medulla. This was accompanied by a reduction in apoptosis and GRP78 expression. CHOP(-/-) mice were protected from TM-induced AKI. The protective effects of 4-PBA extended to the ultrastructural integrity of proximal tubule cells in the outer medulla. When taken together, these results indicate that 4-PBA acts as an ER stress inhibitor, to partially protect the kidney from TM-induced AKI through the repression of ER stress-induced CHOP expression.


Self-contained gene-set analysis of expression data: an evaluation of existing and novel methods.

  • Brooke L Fridley‎ et al.
  • PloS one‎
  • 2010‎

Gene set methods aim to assess the overall evidence of association of a set of genes with a phenotype, such as disease or a quantitative trait. Multiple approaches for gene set analysis of expression data have been proposed. They can be divided into two types: competitive and self-contained. Benefits of self-contained methods include that they can be used for genome-wide, candidate gene, or pathway studies, and have been reported to be more powerful than competitive methods. We therefore investigated ten self-contained methods that can be used for continuous, discrete and time-to-event phenotypes. To assess the power and type I error rate for the various previously proposed and novel approaches, an extensive simulation study was completed in which the scenarios varied according to: number of genes in a gene set, number of genes associated with the phenotype, effect sizes, correlation between expression of genes within a gene set, and the sample size. In addition to the simulated data, the various methods were applied to a pharmacogenomic study of the drug gemcitabine. Simulation results demonstrated that overall Fisher's method and the global model with random effects have the highest power for a wide range of scenarios, while the analysis based on the first principal component and Kolmogorov-Smirnov test tended to have lowest power. The methods investigated here are likely to play an important role in identifying pathways that contribute to complex traits.


Evaluating pharmaceuticals and other organic contaminants in the Lac du Flambeau Chain of Lakes using risk-based screening techniques.

  • Matthew A Pronschinske‎ et al.
  • PloS one‎
  • 2023‎

In an investigation of pharmaceutical contamination in the Lac du Flambeau Chain of Lakes (hereafter referred to as "the Chain"), few contaminants were detected; only eight pharmaceuticals and one pesticide were identified among the 110 pharmaceuticals and other organic contaminants monitored in surface water samples. This study, conducted in cooperation with the Lac du Flambeau Tribe's Water Resource Program, investigated these organic contaminants and potential biological effects in channels connecting lakes throughout the Chain, including the Moss Lake Outlet site, adjacent to the wastewater treatment plant lagoon. Of the 6 sites monitored and 24 samples analyzed, sample concentrations and contaminant detection frequencies were greatest at the Moss Lake Outlet site; however, the concentrations and detection frequencies of this study were comparable to other pharmaceutical investigations in basins with similar characteristics. Because established water-quality benchmarks do not exist for the pharmaceuticals detected in this study, alternative screening-level water-quality benchmarks, developed using two U.S. Environmental Protection Agency toxicological resources (ToxCast database and ECOTOX knowledgebase), were used to estimate potential biological effects associated with the observed contaminant concentrations. Two contaminants (caffeine and thiabendazole) exceeded the prioritization threshold according to ToxCast alternative benchmarks, and four contaminants (acetaminophen, atrazine, caffeine, and carbamazepine) exceeded the prioritization threshold according to ECOTOX alternative benchmarks. Atrazine, an herbicide, was the most frequently detected contaminant (79% of samples), and it exhibited the strongest potential for biological effects due to its high estimated potency. Insufficient toxicological information within ToxCast and ECOTOX for gabapentin and methocarbamol (which had the two greatest concentrations in this study) precluded alternative benchmark development. This data gap presents unknown potential environmental impacts. Future research examining the biological effects elicited by these two contaminants as well as the others detected in this study would further elucidate the ecological relevance of the water chemistry results generated though this investigation.


Reference genes for real-time PCR quantification of microRNAs and messenger RNAs in rat models of hepatotoxicity.

  • María N Lardizábal‎ et al.
  • PloS one‎
  • 2012‎

Hepatotoxicity is associated with major changes in liver gene expression induced by xenobiotic exposure. Understanding the underlying mechanisms is critical for its clinical diagnosis and treatment. MicroRNAs are key regulators of gene expression that control mRNA stability and translation, during normal development and pathology. The canonical technique to measure gene transcript levels is Real-Time qPCR, which has been successfully modified to determine the levels of microRNAs as well. However, in order to obtain accurate data in a multi-step method like RT-qPCR, the normalization with endogenous, stably expressed reference genes is mandatory. Since the expression stability of candidate reference genes varies greatly depending on experimental factors, the aim of our study was to identify a combination of genes for optimal normalization of microRNA and mRNA qPCR expression data in experimental models of acute hepatotoxicity. Rats were treated with four traditional hepatotoxins: acetaminophen, carbon tetrachloride, D-galactosamine and thioacetamide, and the liver expression levels of two groups of candidate reference genes, one for microRNA and the other for mRNA normalization, were determined by RT-qPCR in compliance with the MIQE guidelines. In the present study, we report that traditional reference genes such as U6 spliceosomal RNA, Beta Actin and Glyceraldehyde-3P-dehydrogenase altered their expression in response to classic hepatotoxins and therefore cannot be used as reference genes in hepatotoxicity studies. Stability rankings of candidate reference genes, considering only those that did not alter their expression, were determined using geNorm, NormFinder and BestKeeper software packages. The potential candidates whose measurements were stable were further tested in different combinations to find the optimal set of reference genes that accurately determine mRNA and miRNA levels. Finally, the combination of MicroRNA-16/5S Ribosomal RNA and Beta 2 Microglobulin/18S Ribosomal RNA were validated as optimal reference genes for microRNA and mRNA quantification, respectively, in rat models of acute hepatotoxicity.


Imidazole-rich copper peptides as catalysts in xenobiotic degradation.

  • Sharifa Zaithun Begum‎ et al.
  • PloS one‎
  • 2020‎

Laccases, oxidative copper-enzymes found in fungi and bacteria were used as the basis in the design of nona- and tetrapeptides. Laccases are known to be excellent catalysts for the degradation of phenolic xenobiotic waste. However, since solvent extraction of laccases is environmentally-unfriendly and yields obtained are low, they are less preferred compared to synthetic catalysts. The histidine rich peptides were designed based on the active site of laccase extracted from Trametes versicolor through RCSB Protein Data Bank, LOMETS and PyMol software. The peptides were synthesized using Fmoc-solid phase peptide synthesis (SPPS) with 30-40% yield. These peptides were purified and characterized using LC-MS (purities >75%), FTIR and NMR spectroscopy. Synthesized copper(II)-peptides were crystallized and then analyzed spectroscopically. Their structures were elucidated using 1D and 2D NMR. Standards (o,m,p-cresol, 2,4-dichlorophenol) catalysed using laccase from Trametes versicolor (0.66 U/mg) were screened under different temperatures and stirring rate conditions. After optimizing the degradation of the standards with the best reaction conditions reported herein, medications with phenolic and aromatic structures such as ibuprofen, paracetamol (acetaminophen), salbutamol, erythromycin and insulin were screened using laccase (positive control), apo-peptides and copper-peptides. Their activities evaluated using GC-MS, were compared with those of peptide and copper-peptide catalysts. The tetrapeptide was found to have the higher degradation activity towards salbutamol (96.8%) compared with laccase at 42.8%. Ibuprofen (35.1%), salbutamol (52.9%) and erythromycin (49.7%) were reported to have the highest degradation activities using Cu-tetrapeptide as catalyst when compared with the other medications. Consequently, o-cresol (84%) was oxidized by Tp-Cu while the apo-peptides failed to oxidize the cresols. Copper(II)-peptides were observed to have higher catalytic activity compared to their parent peptides and the enzyme laccase for xenobiotic degradation.


Glutamate dehydrogenase as a biomarker for mitotoxicity; insights from furosemide hepatotoxicity in the mouse.

  • Rachel J Church‎ et al.
  • PloS one‎
  • 2020‎

Glutamate dehydrogenase (GLDH) is a liver-specific biomarker of hepatocellular damage currently undergoing qualification as a drug development tool. Since GLDH is located within the mitochondrial matrix, it has been hypothesized that it might also be useful in assessing mitotoxicity as an initiating event during drug-induced liver injury. According to this hypothesis, hepatocyte death that does not involve primary mitochondrial injury would result in release of intact mitochondria into circulation that could be removed by high speed centrifugation and result in lower GLDH activity measured in spun serum vs un-spun serum. A single prior study in mice has provided some support for this hypothesis. We sought to repeat and extend the findings of this study. Accordingly, mice were treated with the known mitochondrial toxicant, acetaminophen (APAP), or with furosemide (FS), a toxicant believed to cause hepatocyte death through mechanisms not involving mitotoxicity as initiating event. We measured GLDH levels in fresh plasma before and after high speed centrifugation to remove intact mitochondria. We found that both APAP and FS treatments caused substantial hepatocellular necrosis that correlated with plasma alanine aminotransferase (ALT) and GLDH elevations. The plasma GLDH activity in both the APAP- and FS- treated mice was not affected by high-speed centrifugation. Interestingly, the ratio of GLDH:ALT was 5-fold lower during FS compared to APAP hepatotoxicity. Electron microscopy confirmed that both APAP- and FS-treatments had resulted in mitochondrial injury. Mitochondria within vesicles were only observed in the FS-treated mice raising the possibility that mitophagy might account for reduced release of GLDH in the FS-treated mice. Although our results show that plasma GLDH is not clinically useful for evaluating mitotoxicity, the GLDH:ALT ratio as a measure of mitophagy needs to be further studied.


Depressive symptoms are associated with analgesic use in people with Alzheimer's disease: Kuopio ALSOVA study.

  • Julia Fiona-Maree Gilmartin‎ et al.
  • PloS one‎
  • 2015‎

Neuropsychiatric symptoms of Alzheimer's disease (AD) such as depression may be associated with pain, which according to the literature may be inadequately recognized and managed in this population. This study aimed to identify the factors associated with analgesic use in persons with AD; in particular, how AD severity, functional status, neuropsychiatric symptoms of AD, co-morbidities and somatic symptoms are associated with analgesic use. 236 community-dwelling persons with very mild or mild AD at baseline, and their caregivers, were interviewed over five years as part of the prospective ALSOVA study. Generalized Estimating Equations (GEEs) were used to estimate unadjusted and adjusted odds ratios (ORs) for the factors associated with analgesic use over a five year follow-up. The proportion of persons with AD using any analgesic was low (13.6%) at baseline and remained relatively constant during the follow-up (15.3% at Year 5). Over time, the most prevalent analgesic changed from non-steroidal anti-inflammatories (8.1% of persons with AD at Year 1) to acetaminophen (11.1% at Year 5). Depressive symptoms (measured by the Beck Depression Inventory, BDI) were independently associated with analgesic use, after effects of age, gender, education, AD severity, comorbidities and somatic symptoms were taken into account. For every one unit increase in BDI, the odds of analgesic use increased by 4% (OR = 1.04, 95% confidence interval CI = 1.02-1.07). Caregiver depressive symptoms were not statistically significantly associated with analgesic use of the person with AD. Depressive symptoms were significantly associated with analgesic use during the five year follow-up period. Possible explanations warranting investigation are that persons with AD may express depressive symptoms as painful somatic complaints, or untreated pain may cause depressive symptoms. Greater awareness of the association between depressive symptoms and analgesic use may lead to safer and more effective prescribing for these conditions.


Polymerase-free measurement of microRNA-122 with single base specificity using single molecule arrays: Detection of drug-induced liver injury.

  • David M Rissin‎ et al.
  • PloS one‎
  • 2017‎

We have developed a single probe method for detecting microRNA from human serum using single molecule arrays, with sequence specificity down to a single base, and without the use of amplification by polymerases. An abasic peptide nucleic acid (PNA) probe-containing a reactive amine instead of a nucleotide at a specific position in the sequence-for detecting a microRNA was conjugated to superparamagnetic beads. These beads were incubated with a sample containing microRNA, a biotinylated reactive nucleobase-containing an aldehyde group-that was complementary to the missing base in the probe sequence, and a reducing agent. When a target molecule with an exact match in sequence hybridized to the capture probe, the reactive nucleobase was covalently attached to the backbone of the probe by a dynamic covalent chemical reaction. Single molecules of the biotin-labeled probe were then labeled with streptavidin-β-galactosidase (SβG), the beads were resuspended in a fluorogenic enzyme substrate, loaded into an array of femtoliter wells, and sealed with oil. The array was imaged fluorescently to determine which beads were associated with single enzymes, and the average number of enzymes per bead was determined. The assay had a limit of detection of 500 fM, approximately 500 times more sensitive than a corresponding analog bead-based assay, with target specificity down to a single base mis-match. This assay was used to measure microRNA-122 (miR-122)-an established biomarker of liver toxicity-extracted from the serum of patients who had acute liver injury due to acetaminophen, and control healthy patients. All patients with liver injury had higher levels of miR-122 in their serum compared to controls, and the concentrations measured correlated well with those determined using RT-qPCR. This approach allows rapid quantification of circulating microRNA with single-based specificity and a limit of quantification suitable for clinical use.


Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry.

  • Wanchang Cui‎ et al.
  • PloS one‎
  • 2011‎

The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: