Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 166 papers

Black fungus immunosuppressive epidemic with Covid-19 associated mucormycosis (zygomycosis): a clinical and diagnostic perspective from India.

  • Kuljeet Singh‎ et al.
  • Immunogenetics‎
  • 2022‎

The catastrophic phase of Covid-19 turns the table over with the spread of its disastrous transmission network throughout the world. Covid-19 associated with mucormycosis fungal infection accompanied by opportunistic comorbidities have emerged the myriad of complications and manifestations. We searched the electronic databases of Google Scholar, PubMed, Springer, and Elsevier until June 05, 2021, using keywords. We retrieved the details of confirmed and suspected mucormycosis patients associated with Covid-19. We analyzed the case reports, treatment given for Covid-19, steroids used, associated comorbidities, mucormycosis site involved, and patients survived or dead. Overall, 102 patients of mucormycosis associated with Covid-19 have been reported from India. Mucormycosis was predominant in males (69.6%) rather than females (19.6%), and most of the patients were active Covid-19 cases (70.5%). Steroids were mostly used (68.6%) for the treatment of Covid-19 followed by remdesivir (10.7%). Patients were suffering from diabetes mellitus (88.2%) and severe diabetic ketoacidosis (11.7%). Mucormycosis affects the sino-nasal (72.5%), orbit (24.5%), central nervous system (18.6%), and maxillary necrosis (13.7%) of the patients. The Mortality rate was recorded as 23.5%, and recovery rate was 2.9%. Diabetes mellitus cases are highest in India as compared to other countries, and prevalent use of steroids with the background of Covid-19 becomes an opportunistic environment for mucormycosis fungal infection to survive.


Polymorphism and phylogeny of dinucleotide repeats in human T-cell receptor Vb6 genes.

  • P Charmley‎ et al.
  • Immunogenetics‎
  • 1993‎

The Vb6 subfamily is the largest reported subfamily of human T-cell receptor (Tcr) genes, with as many as 14 possible members based on variation in reported DNA sequences. A study of the genomic organization of four distinct Vb6 genes indicated that they contained within their introns the uninterrupted dinucleotide repeat (GT)n, with n > 8. DNA amplification primers and conditions were determined which amplified the intron of these four different Vb6 gene segments. All four Vb6 genes tested showed length polymorphism when examined in a group of unrelated individuals. Careful sizing and DNA sequencing showed that the alleles of each gene differed in size by multiples of two base pairs (bp), due to different repeat numbers of the dinucleotide (GT)n. These four microsatellite polymorphisms had from three to ten alleles, and individual heterozygosities of 26% to 83%. The large number of alleles and the high heterozygosity make these polymerase chain reaction (PCR)-based polymorphisms very attractive genetic markers for segregation studies which postulate the presence of autoimmune susceptibility genes within the Tcrb region. Vb6 hybridization to genomic DNA confirmed the relatively large size of the Vb6 subfamily in several hominoid species. Nucleotide sequencing of an intron of the Vb6 genes from other primates revealed the presence of dinucleotide repeats similar to those found in human Vb6 genes. Thus, the (GT)n microsatellite was not only present in the Vb6 intron before Vb6 gene duplication, but was present before speciation of the hominoids.


Characterisation of major histocompatibility complex class IIa haplotypes in an island sheep population.

  • Kara L Dicks‎ et al.
  • Immunogenetics‎
  • 2019‎

The ovine MHC class IIa is known to consist of six to eight loci located in close proximity on chromosome 20, forming haplotypes that are typically inherited without recombination. Here, we characterise the class IIa haplotypes within the Soay sheep (Ovis aries) on St. Kilda to assess the diversity present within this unmanaged island population. We used a stepwise sequence-based genotyping strategy to identify alleles at seven polymorphic MHC class IIa loci in a sample of 118 Soay sheep from four cohorts spanning 15 years of the long-term study on St. Kilda. DRB1, the most polymorphic MHC class II locus, was characterised first in all 118 sheep and identified six alleles. Using DRB1 homozygous animals, the DQA (DQA1, DQA2 and DQA2-like) and DQB (DQB1, DQB2 and DQB2-like) loci were sequenced, revealing eight haplotypes. Both DQ1/DQ2 and DQ2/DQ2-like haplotype configurations were identified and a single haplotype carrying three DQB alleles. A test sample of 94 further individuals typed at the DRB1 and DQA loci found no exceptions to the eight identified haplotypes and a haplotype homozygosity of 21.3%. We found evidence of historic positive selection at DRB1, DQA and DQB. The limited variation at MHC class IIa loci in Soay sheep enabled haplotype characterisation but showed that no single locus could capture the full extent of the expressed variation in the region.


The polymorphism at residue 156 determines the HLA-B*35 restricted peptide repertoire during HCMV infection.

  • Wiebke C Abels‎ et al.
  • Immunogenetics‎
  • 2018‎

Peptide selection in infected cells is not fully understood yet, but several indications point to the fact that there are differences to uninfected cells, especially in productive HCMV infection, since HCMV evolved various strategies to disable the hosts immune system, including presentation of peptide-HLA complexes to immune effector cells. Therefore, peptide predictions for specific HLA alleles are limited in these cases and the naturally presented peptide repertoire of HCMV-infected cells is of major interest to optimize adoptive T cell therapies. The allotypes HLA-B*35:01 and B*35:08 differ at a single amino acid at position 156 and have been described to differ in their peptide features and in their association with the peptide loading complex. Virus specific T cells recognizing the allelic pHLA-B*35 complexes could be detected, indicating a significant role of this HLA subtypes in viral immunity. However, naturally selected and presented viral peptides have not been described so far. In this study, we analyzed the peptide binding repertoire for HLA-B*35:01 and HLA-B*35:08 in HCMV-infected cells. The isolated peptides from both allelic subtypes were of extraordinary length, however differed in their features, origin, and sequence. For these HCMV-originated peptides, no overlap in the peptide repertoire could be observed between the two allelic subtypes. These findings reveal the discrepancies between predicted and naturally presented immunogenic epitopes and support the need of comprehensive peptide recruitment data for personalized and effective cellular therapies.


Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations.

  • Akash M Mehta‎ et al.
  • Immunogenetics‎
  • 2015‎

Genetic variation of antigen-processing machinery (APM) components has been shown to be associated with cervical carcinoma risk and outcome in a genetically homogeneous Dutch population. However, the role of APM component single nucleotide polymorphisms (SNPs) in genetically heterogeneous populations with different distributions of human papillomavirus (HPV) subtypes remains unclear. Eleven non-synonymous, coding SNPs in the TAP1, TAP2, LMP2, LMP7 and ERAP1 genes were genotyped in cervical carcinoma patients and healthy controls from two distinct Indonesian populations (Balinese and Javanese). Individual genotype and allele distributions were investigated using single-marker analysis, and combined SNP effects were assessed by haplotype construction and haplotype interaction analysis. Allele distribution patterns in Bali and Java differed in relation to cervical carcinoma risk, with four ERAP1 SNPs and one TAP2 SNP in the Javanese population showing significant association with cervical carcinoma risk, while in the Balinese population, only one TAP2 SNP showed this association. Multimarker analysis demonstrated that in the Javanese patients, one specific haplotype, consisting of the ERAP1-575 locus on chromosome 5 and the TAP2-379 and TAP2-651 loci on chromosome 6, was significantly associated with cervical carcinoma risk (global P = 0.008); no significant haplotype associations were found in the Balinese population. These data indicate not only that genetic variation in APM component genes is associated with cervical carcinoma risk in Indonesia but also that the patterns of association differ depending on background genetic composition and possibly on differences in HPV type distribution.


Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates.

  • Ian Fish‎ et al.
  • Immunogenetics‎
  • 2015‎

The oligoadenylate synthetase 1 (OAS1) enzyme acts as an innate sensor of viral infection and plays a major role in the defense against a wide diversity of viruses. Polymorphisms at OAS1 have been shown to correlate with differential susceptibility to several infections of great public health significance, including hepatitis C virus, SARS coronavirus, and West Nile virus. Population genetics analyses in hominoids have revealed interesting evolutionary patterns. In Central African chimpanzee, OAS1 has evolved under long-term balancing selection, resulting in the persistence of polymorphisms since the origin of hominoids, whereas human populations have acquired and retained OAS1 alleles from Neanderthal and Denisovan origin. We decided to further investigate the evolution of OAS1 in primates by characterizing intra-specific variation in four species commonly used as models in infectious disease research: the rhesus macaque, the cynomolgus macaque, the olive baboon, and the Guinea baboon. In baboons, OAS1 harbors a very low level of variation. In contrast, OAS1 in macaques exhibits a level of polymorphism far greater than the genomic average, which is consistent with the action of balancing selection. The region of the enzyme that directly interacts with viral RNA, the RNA-binding domain, contains a number of polymorphisms likely to affect the RNA-binding affinity of OAS1. This strongly suggests that pathogen-driven balancing selection acting on the RNA-binding domain of OAS1 is maintaining variation at this locus. Interestingly, we found that a number of polymorphisms involved in RNA-binding were shared between macaques and chimpanzees. This represents an unusual case of convergent polymorphism.


454 screening of individual MHC variation in an endemic island passerine.

  • Catalina Gonzalez-Quevedo‎ et al.
  • Immunogenetics‎
  • 2015‎

Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly been used in the last decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, and although several methodologies have been proposed to deal with this, until recently there have been no standard guidelines for the validation of putative MHC alleles. In this study, we used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island endemic Berthelot's pipit (Anthus berthelotii). We were able to characterise MHC genotypes across 309 individuals with high levels of repeatability. We were also able to determine alleles that had low amplification efficiencies, whose identification within individuals may thus be less reliable. At the population level we found lower levels of MHC diversity in Berthelot's pipit than in its widespread continental sister species the tawny pipit (Anthus campestris), and observed trans-species polymorphism. Using the sequence data, we identified signatures of gene conversion and evidence of maintenance of functionally divergent alleles in Berthelot's pipit. We also detected positive selection at 10 codons. The present study therefore shows that we have an efficient method for screening individual MHC variation across large datasets in Berthelot's pipit, and provides data that can be used in future studies investigating spatio-temporal patterns and scales of selection on the MHC.


Copy number variation and genetic diversity of MHC Class IIb alleles in an alien population of Xenopus laevis.

  • Barbara K Mable‎ et al.
  • Immunogenetics‎
  • 2015‎

Xenopus laevis (the African clawed frog), which originated through hybridisation and whole genome duplication, has been used as a model for genetics and development for many years, but surprisingly little is known about immune gene variation in natural populations. The purpose of this study was to use an isolated population of X. laevis that was introduced to Wales, UK in the past 50 years to investigate how variation at the MHC compares to that at other loci, following a severe population bottleneck. Among 18 individuals, we found nine alleles based on exon 2 sequences of the Class IIb region (which includes the peptide binding region). Individuals carried from one to three of the loci identified from previous laboratory studies. Genetic variation was an order of magnitude higher at the MHC compared with three single-copy nuclear genes, but all loci showed high levels of heterozygosity and nucleotide diversity and there was not an excess of homozygosity or decrease in diversity over time that would suggest extensive inbreeding in the introduced population. Tajima's D was positive for all loci, which is consistent with a bottleneck. Moreover, comparison with published sequences identified the source of the introduced population as the Western Cape region of South Africa, where most commercial suppliers have obtained their stocks. These factors suggest that despite founding by potentially already inbred individuals, the alien population in Wales has maintained substantial genetic variation at both adaptively important and neutral genes.


Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin.

  • Fei Ling‎ et al.
  • Immunogenetics‎
  • 2011‎

Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background and to facilitate the experimental use of cynomolgus macaques, the second exon of the MhcMafa-DOB, -DPB1, and -DQB1 genes from 143 cynomolgus macaques were characterized by cloning to sequencing. A total of 16 Mafa-DOB, 16 Mafa-DPB1, and 34 Mafa-DQB1 alleles were identified, which revealed limited, moderate, and marked allelic polymorphism at DOB, DPB1, and DQB1, respectively, in a cohort of cynomolgus macaques of Vietnamese origin. In addition, 16 Mafa-DOB, 5 Mafa-DPB1, and 8 Mafa-DQB1 alleles represented novel sequences that had not been reported in earlier studies. Almost of the sequences detected at the DOB and DQB1 locus in the present study belonged to DOB*01 (100%) and DQB1*06 (62%) lineages, respectively. Interestingly, four, three, and one high-frequency alleles were detected at Mafa-DOB, -DPB1, and -DQB1, respectively, in this monkeys. The alleles with the highest frequency among these monkeys were Mafa-DOB*010102, Mafa-DPB1*13, and Mafa-DQB1*0616, and these were found in 33 (25.6%) of 129 monkeys, 32 (31.37%) of 102 monkeys, and 30 (31%) of 143 monkeys, respectively. The high-frequency alleles may represent high priority targets for additional characterization of immune function. We also carried out evolutionary and population analyses using these sequences to reveal population-specific alleles. This information will not only promote the understanding of MHC diversity and polymorphism in the cynomolgus macaque but will also increase the value of this species as a model for biomedical research.


A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex.

  • James L Stafford‎ et al.
  • Immunogenetics‎
  • 2006‎

Three novel and closely related leukocyte immune-type receptors (IpLITR) have been identified in channel catfish (Ictalurus punctatus). These receptors belong to a large polymorphic and polygenic subset of the Ig superfamily with members located on at least three independently segregating loci. Like mammalian and avian innate immune regulatory receptors, IpLITRs have both putative inhibitory and stimulatory forms, with multiple types coexpressed in various lymphoid tissues and clonal leukocyte cell lines. IpLITRs have an unusual and novel relationship to mammalian and avian innate immune receptors: the membrane distal Ig domains of an individual IpLITR are related to fragment crystallizable receptors (FcRs) and FcR-like proteins, whereas the membrane proximal Ig domains are related to several leukocyte receptor complex encoded receptors. This unique composition of Ig domains within individual receptors supports the hypothesis that functionally and genomically distinct immune receptor families found in tetrapods may have evolved from such ancestral genes by duplication and recombination events. Furthermore, the discovery of a large heterogeneous family of immunoregulatory receptors in teleosts, reminiscent of amphibian, avian, and mammalian Ig-like receptors, suggests that complex innate immune receptor networks have been conserved during vertebrate evolution.


IL1RN genetic variations and risk of IPF: a meta-analysis and mRNA expression study.

  • Nicoline M Korthagen‎ et al.
  • Immunogenetics‎
  • 2012‎

Idiopathic pulmonary fibrosis (IPF) is a rare and devastating lung disease of unknown aetiology. Genetic variations in the IL1RN gene, encoding the interleukin-1 receptor antagonist (IL-1Ra), have been associated with IPF susceptibility. Several studies investigated the variable number tandem repeat (VNTR) or single nucleotide polymorphisms rs408392, rs419598 and rs2637988, with variable results. The aim of this study was to elucidate the influence of polymorphisms in IL1RN on IPF susceptibility and mRNA expression. We performed a meta-analysis of the five case-control studies that investigated an IL1RN polymorphism in IPF in a Caucasian population. In addition, we investigated whether IL1RN mRNA expression was influenced by IL1RN polymorphisms. The VNTR, rs408392 and rs419598 were in tight linkage disequilibrium, with D' > 0.99. Furthermore, rs2637988 was in linkage disequilibrium with the VNTR (D' = 0.90). A haploblock of VNTR*2 and the minor alleles of rs408392and rs419598 was constructed. Meta-analysis revealed that this VNTR*2 haploblock is associated with IPF susceptibility both with an allelic model (odds ratio = 1.42, p = 0.002) and a carriership model (odds ratio = 1.60, p = 0.002). IL1RN mRNA expression was significantly influenced by rs2637988, with lower levels found in carriers of the (minor) GG genotype (p < 0.001). From this meta-analysis, we conclude that the VNTR*2 haploblock is associated with susceptibility to IPF. In addition, polymorphisms in IL1RN influence IL-1Ra mRNA expression, suggesting that lower levels of IL-1Ra predispose to developing IPF. Together these findings demonstrate that the cytokine IL-1Ra plays a role in IPF pathogenesis.


Evidence for adaptation of porcine Toll-like receptors.

  • Kwame A Darfour-Oduro‎ et al.
  • Immunogenetics‎
  • 2016‎

Naturally endemic infectious diseases provide selective pressures for pig populations. Toll-like receptors (TLRs) represent the first line of immune defense against pathogens and are likely to play a crucial adaptive role for pig populations. This study was done to determine whether wild and domestic pig populations representing diverse global environments demonstrate local TLR adaptation. The genomic sequence encoding the ectodomain, responsible for interacting with pathogen ligands of bacterial (TLR1, TLR2 and TLR6) and viral (TLR3, TLR7 and TLR8) receptors, was obtained. Mitochondrial D-loop region sequences were obtained and a phylogenetic analysis using these sequences revealed a clear separation of animals into Asian (n = 27) and European (n = 40) clades. The TLR sequences were then analyzed for population-specific positive selection signatures within wild boars and domesticated pig populations derived from Asian and European clades. Using within-population and between-population tests for positive selection, a TLR2-derived variant 376A (126Thr), estimated to have arisen in 163,000 years ago with a frequency of 83.33% within European wild boars, 98.00% within domestic pig breeds of European origin, 40.00% within Asian wild boars, and 11.36% within Asian domestic pigs, was identified to be under positive selection in pigs of European origin. The variant is located within the N terminal domain of the TLR2 protein 3D crystal structure and could affect ligand binding. This study suggests the TLR2 gene contributing to responses to bacterial pathogens has been crucial in adaptation of pigs to pathogens.


Identification of polymorphisms in the bovine collagenous lectins and their association with infectious diseases in cattle.

  • R S Fraser‎ et al.
  • Immunogenetics‎
  • 2018‎

Infectious diseases are a significant issue in animal production systems, including both the dairy and beef cattle industries. Understanding and defining the genetics of infectious disease susceptibility in cattle is an important step in the mitigation of their impact. Collagenous lectins are soluble pattern recognition receptors that form an important part of the innate immune system, which serves as the first line of host defense against pathogens. Polymorphisms in the collagenous lectin genes have been shown in previous studies to contribute to infectious disease susceptibility, and in cattle, mutations in two collagenous lectin genes (MBL1 and MBL2) are associated with mastitis. To further characterize the contribution of variation in the bovine collagenous lectins to infectious disease susceptibility, we used a pooled NGS approach to identify short nucleotide variants (SNVs) in the collagenous lectins (and regulatory DNA) of cattle with (n = 80) and without (n = 40) infectious disease. Allele frequency analysis identified 74 variants that were significantly (p < 5 × 10-6) associated with infectious disease, the majority of which were clustered in a 29-kb segment upstream of the collectin locus on chromosome 28. In silico analysis of the functional effects of all the variants predicted 11 SNVs with a deleterious effect on protein structure and/or function, 148 SNVs that occurred within potential transcription factor binding sites, and 31 SNVs occurring within potential miRNA binding elements. This study provides a detailed look at the genetic variation of the bovine collagenous lectins and identifies potential genetic markers for infectious disease susceptibility.


The antibody loci of the domestic goat (Capra hircus).

  • John C Schwartz‎ et al.
  • Immunogenetics‎
  • 2018‎

The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1) has facilitated characterization of all three antibody loci with high confidence and comparative analysis to cattle. We observed broad similarity of goat and cattle antibody-encoding loci but with notable differences that likely influence formation of the functional antibody repertoire. The goat heavy-chain locus is restricted to only four functional and nearly identical IGHV genes, in contrast to the ten observed in cattle. Repertoire analysis indicates that light-chain usage is more balanced in goats, with greater representation of kappa light chains (~ 20-30%) compared to that in cattle (~ 5%). The present study represents the first characterization of the goat antibody loci and will help inform future investigations of their antibody responses to disease and vaccination.


Coordinate change in phenotype in a mouse cell line selected for CD8 expression.

  • R Hyman‎ et al.
  • Immunogenetics‎
  • 1992‎

A CD4+, CD8+ derivative of the CD4+, CD8- cell line SAKRTLS 12.1 was isolated by fluorescence activated cell sorting for CD8+ cells. This derivative showed a co-ordinate change in a number of independent characters: The parental cell line was CD4+, CD8-, CD3+, CD5hi, HSA+, DEXR, CD44hi, while the derivative was CD4+, CD8+, CD3-, CD5(10), HSA+, DEXS, CD44(10). The derivative expressed the Thy-1.1, Ly-2.1, and Ly-3.1 surface antigens, consistent with origin from the SAKRTLS 12.1 parental cell line, and showed a drug resistance profile identical to that of the parent. It was not possible to isolate revertants with a phenotype identical to that of the parental cell line. Activation of the structural gene coding for CD8 alpha chain was correlated with demethylation at several sites. We interpret these results to mean that this CD8+ derivative of SAKRTLS 12.1 arose as a result of an alteration of a gene that coordinately regulates multiple genes whose expression changes during thymocyte differentiation. Gene methylation may contribute, directly or indirectly, to some or all of the changes in gene expression observed.


Erratum to: rhesus macaque MHC class I molecules show differential subcellular localizations.

  • Cornelia Rosner‎ et al.
  • Immunogenetics‎
  • 2010‎

The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding alpha1 and alpha2 domains, suggesting failure of peptide binding is responsible for retaining 'intracellular' Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.


Chronic allergen challenge induces bronchial mast cell accumulation in BALB/c but not C57BL/6 mice and is independent of IL-9.

  • Suzan Pae‎ et al.
  • Immunogenetics‎
  • 2010‎

As genetically engineered mutant mice deficient in single genes are usually generated on a C57BL/6 background, to study mast cell trafficking in mutant mice, we initially investigated whether mast cells accumulated in bronchi in C57BL/6 mice challenged with OVA allergen acutely or chronically for 1 to 3 months. The total number of bronchial mast cells were quantitated using toluidine blue staining in airways of different sizes, i.e. , small (<90 microm), medium (90-155 microm), or large (>150 microm) airways. Non-OVA challenged and acute OVA challenged mice (C57BL/6 and BALB/c) had no detectable bronchial mast cells. Chronic OVA challenge in BALB/c mice for 1 or 3 months induced a significant increase in the number of bronchial mast cells in small-, medium-, and large-sized airways but minimal change in the number of bronchial mast cells in C57BL/6 mice. Both BALB/c and C57BL/6 mice developed significant lung eosinophilia following acute or chronic OVA challenge. Studies of IL-9-deficient mice on a BALB/c background demonstrated a significant increase in the number of bronchial mast cells in IL-9-deficient mice suggesting that IL-9 was not required for the bronchial accumulation of mast cells. Overall, these studies demonstrate that the chronic OVA challenge protocol we have utilized in BALB/c mice provides a model to study the mechanism of bronchial mast cell accumulation and that bronchial mast cell accumulation in chronic OVA challenged mice is independent of IL-9 in this model.


Variable responses of formyl peptide receptor haplotypes toward bacterial peptides.

  • Jeannie M Gripentrog‎ et al.
  • Immunogenetics‎
  • 2008‎

The chemoattractant neutrophil formyl peptide receptor (FPR) binds bacterial and mitochondrial N-formylated peptides, which allows the neutrophils to find the bacterial source and/or site of tissue damage. Certain inflammatory disorders may be due in part to an impaired innate immune system that does not respond to acute bacterial damage in a timely fashion. Because the human FPR is encoded by a large number of different haplotypes arising from ten single-nucleotide polymorphisms, we examined the possibility that some of these haplotypes are functionally distinct. We analyzed the response of three common FPR haplotypes to peptides from Escherichia coli, Mycobacterium avium ssp. paratuberculosis, and human mitochondria. All three haplotypes responded similarly to the E. coli and mitochondrial peptides, whereas one required a higher concentration of the M. avium peptide fMFEDAVAWF for receptor downregulation, receptor signaling, and chemotaxis. This raises the possibility of additional bacterial species differences in functional responses among FPR variants and establishes a precedent with potentially important implications for our innate immune response against bacterial infections. We also investigated whether certain FPR haplotypes are associated with rheumatoid arthritis (RA) by sequencing FPR1 from 148 Caucasian individuals. The results suggested that FPR haplotypes do not significantly contribute toward RA.


The SPINK gene family and celiac disease susceptibility.

  • Martin C Wapenaar‎ et al.
  • Immunogenetics‎
  • 2007‎

The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n=15) and diet-treated patients (n=31) and controls (n=16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population.


Phylogenetic and functional conservation of the NKR-P1F and NKR-P1G receptors in rat and mouse.

  • Lise Kveberg‎ et al.
  • Immunogenetics‎
  • 2011‎

Two clusters of rat Nkrp1 genes can be distinguished based on phylogenetic relationships and functional characteristics. The proximal (centromeric) cluster encodes the well-studied NKR-P1A and NKR-P1B receptors and the distal cluster, the largely uncharacterized, NKR-P1F and NKR-P1G receptors. The inhibitory NKR-P1G receptor is expressed only by the Ly49s3(+) NK cell subset as detected by RT-PCR, while the activating NKR-P1F receptor is detected in both Ly49s3(+) and NKR-P1B(+) NK cells. The mouse NKR-P1G ortholog is expressed by both NKR-P1D(-) and NKR-P1D(+) NK cells in C57BL/6 mice. The rat and mouse NKR-P1F and NKR-P1G receptors demonstrate a striking, cross-species conservation of specificity for Clr ligands. NKR-P1F and NKR-P1G reporter cells reacted with overlapping panels of tumour cell lines and with cells transiently transfected with rat Clr2, Clr3, Clr4, Clr6 and Clr7 and mouse Clrc, Clrf, Clrg and Clrd/x, but not with Clr11 or Clrb, which serve as ligands for NKR-P1 from the proximal cluster. These data suggest that the conserved NKR-P1F and NKR-P1G receptors function as promiscuous receptors for a rapidly evolving family of Clr ligands in rodent NK cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: