Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 83 papers

Reliability of the Dynavision task in virtual reality to explore visuomotor phenotypes.

  • Yvan Pratviel‎ et al.
  • Scientific reports‎
  • 2021‎

Daily-life behaviors strongly rely on visuomotor integration, a complex sensorimotor process with obvious plasticity. Visual-perceptive and visual-cognitive functions are degraded by neurological disorders and brain damage, but are improved by vision training, e.g. in athletes. Hence, developing tools to evaluate/improve visuomotor abilities has found echo among psychologists, neurophysiologists, clinicians and sport professionals. Here we implemented the Dynavision visuomotor reaction task in virtual reality (VR) to get a flexible tool to place high demands on visual-perceptive and visual-cognitive processes, and explore individual abilities in visuomotor integration. First, we demonstrated high test-retest reliability for the task in VR among healthy physically-active students (n = 64, 32 females). Second, the capture of head movements thanks to the VR-headset sensors provided new and reliable information on individual visual-perceptual strategies, which added significant value to explore visuomotor phenotypes. A factor analysis of mixed data and hierarchical clustering on principal components points to head movements, video-games practice and ball-tracking sports as critical cues to draw visuomotor phenotypes among our participants. We conclude that the visuomotor task in VR is a reliable, flexible and promising tool. Since VR nowadays can serve e.g. to modulate multisensorial integration by creating visual interoceptive-exteroceptive conflicts, or placing specifically designed cognitive demand, much could be learned on complex integrated visuomotor processes through VR experiments. This offers new perspectives for post brain injury risk evaluation, rehabilitation programs and visual-cognitive training.


Sex Differences in Cognitive Decline in Subjects with High Likelihood of Mild Cognitive Impairment due to Alzheimer's disease.

  • Dongwha Sohn‎ et al.
  • Scientific reports‎
  • 2018‎

Sex differences in Alzheimer's disease (AD) biology and progression are not yet fully characterized. The goal of this study is to examine the effect of sex on cognitive progression in subjects with high likelihood of mild cognitive impairment (MCI) due to Alzheimer's and followed up to 10 years in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cerebrospinal fluid total-tau and amyloid-beta (Aβ42) ratio values were used to sub-classify 559 MCI subjects (216 females, 343 males) as having "high" or "low" likelihood for MCI due to Alzheimer's. Data were analyzed using mixed-effects models incorporating all follow-ups. The worsening from baseline in Alzheimer's Disease Assessment Scale-Cognitive score (mean, SD) (9 ± 12) in subjects with high likelihood of MCI due to Alzheimer's was markedly greater than that in subjects with low likelihood (1 ± 6, p < 0.0001). Among MCI due to AD subjects, the mean worsening in cognitive score was significantly greater in females (11.58 ± 14) than in males (6.87 ± 11, p = 0.006). Our findings highlight the need to further investigate these findings in other populations and develop sex specific timelines for Alzheimer's disease progression.


De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy.

  • Elena Buena-Atienza‎ et al.
  • Scientific reports‎
  • 2016‎

X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. 'LIAVA', 'LVAVA') with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the 'LIAVA' haplotype derived from an ancestral less deleterious 'LIAVS' haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree.


Super-resolution imaging reveals the sub-diffraction phenotype of Zellweger Syndrome ghosts and wild-type peroxisomes.

  • Kareem Soliman‎ et al.
  • Scientific reports‎
  • 2018‎

Peroxisomes are ubiquitous cell organelles involved in many metabolic and signaling functions. Their assembly requires peroxins, encoded by PEX genes. Mutations in PEX genes are the cause of Zellweger Syndrome spectrum (ZSS), a heterogeneous group of peroxisomal biogenesis disorders (PBD). The size and morphological features of peroxisomes are below the diffraction limit of light, which makes them attractive for super-resolution imaging. We applied Stimulated Emission Depletion (STED) microscopy to study the morphology of human peroxisomes and peroxisomal protein localization in human controls and ZSS patients. We defined the peroxisome morphology in healthy skin fibroblasts and the sub-diffraction phenotype of residual peroxisomal structures ('ghosts') in ZSS patients that revealed a relation between mutation severity and clinical phenotype. Further, we investigated the 70 kDa peroxisomal membrane protein (PMP70) abundance in relationship to the ZSS sub-diffraction phenotype. This work improves the morphological definition of peroxisomes. It expands current knowledge about peroxisome biogenesis and ZSS pathoethiology to the sub-diffraction phenotype including key peroxins and the characteristics of ghost peroxisomes.


Accumulation of isolevuglandin-modified protein in normal and fibrotic lung.

  • Stacey Mont‎ et al.
  • Scientific reports‎
  • 2016‎

Protein lysine modification by γ-ketoaldehyde isomers derived from arachidonic acid, termed isolevuglandins (IsoLGs), is emerging as a mechanistic link between pathogenic reactive oxygen species and disease progression. However, the questions of whether covalent modification of proteins by IsoLGs are subject to genetic regulation and the identity of IsoLG-modified proteins remain unclear. Herein we show that Nrf2 and Nox2 are key regulators of IsoLG modification in pulmonary tissue and report on the identity of proteins analyzed by LC-MS following immunoaffinity purification of IsoLG-modified proteins. Gene ontology analysis revealed that proteins in numerous cellular pathways are susceptible to IsoLG modification. Although cells tolerate basal levels of modification, exceeding them induces apoptosis. We found prominent modification in a murine model of radiation-induced pulmonary fibrosis and in idiopathic pulmonary fibrosis, two diseases considered to be promoted by gene-regulated oxidant stress. Based on these results we hypothesize that IsoLG modification is a hitherto unrecognized sequelae that contributes to radiation-induced pulmonary injury and IPF.


CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease).

  • S L Eaton‎ et al.
  • Scientific reports‎
  • 2019‎

The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating monogenetic lysosomal disorders that affect children and young adults with no cure or effective treatment currently available. One of the more severe infantile forms of the disease (INCL or CLN1 disease) is due to mutations in the palmitoyl-protein thioesterase 1 (PPT1) gene and severely reduces the child's lifespan to approximately 9 years of age. In order to better translate the human condition than is possible in mice, we sought to produce a large animal model employing CRISPR/Cas9 gene editing technology. Three PPT1 homozygote sheep were generated by insertion of a disease-causing PPT1 (R151X) human mutation into the orthologous sheep locus. This resulted in a morphological, anatomical and biochemical disease phenotype that closely resembles the human condition. The homozygous sheep were found to have significantly reduced PPT1 enzyme activity and accumulate autofluorescent storage material, as is observed in CLN1 patients. Clinical signs included pronounced behavioral deficits as well as motor deficits and complete loss of vision, with a reduced lifespan of 17 ± 1 months at a humanely defined terminal endpoint. Magnetic resonance imaging (MRI) confirmed a significant decrease in motor cortical volume as well as increased ventricular volume corresponding with observed brain atrophy and a profound reduction in brain mass of 30% at necropsy, similar to alterations observed in human patients. In summary, we have generated the first CRISPR/Cas9 gene edited NCL model. This novel sheep model of CLN1 disease develops biochemical, gross morphological and in vivo brain alterations confirming the efficacy of the targeted modification and potential relevance to the human condition.


Peripheral immune cell imbalance is associated with cortical beta-amyloid deposition and longitudinal cognitive decline.

  • Neel H Mehta‎ et al.
  • Scientific reports‎
  • 2023‎

Neuroinflammation is believed to be a key process in Alzheimer's disease (AD) pathogenesis. Recently, the neutrophil-to-lymphocyte (NLR) and lymphocyte-to-monocyte ratios (LMR) have been proposed to be useful peripheral markers of inflammation. However, it is unclear how these inflammatory ratios relate to AD pathology, such as β-amyloid (Aβ) plaques and tau tangles. Using 18F-florbetapir and 18F-flortaucipir positron emission tomography (PET), we sought to determine how the NLR and LMR are associated with AD pathology both cross-sectionally and longitudinally. We further evaluated associations between the NLR and LMR and longitudinal cognitive decline. Using data from the Alzheimer's Disease Neuroimaging Initiative, we analyzed blood, PET, and cognitive data from 1544 subjects-405 cognitively normal, 838 with mild cognitive impairment (MCI), and 301 with AD. Associations between the NLR and LMR and Aβ and tau on PET were assessed using ordinary least-squares and mixed-effects regression models, while adjusting for age, sex, years of education, and apolipoprotein E ε2 or ε4 carrier status. Associations between the NLR and LMR and cognitive function, as measured by the AD Assessment Scale-Cognitive Subscale, 13-item version, were also assessed. MCI and AD subjects had higher NLR (p = 0.017, p < 0.001, respectively) and lower LMR (p = 0.013, p = 0.023). The NLR, but not the LMR, was significantly associated with Aβ (p = 0.028), suggesting that higher NLR was associated with greater Aβ deposition in the brain. Neither the NLR nor the LMR was associated with tau deposition (p > 0.05). A higher NLR was associated with greater longitudinal cognitive decline (p < 0.001). A higher ratio of peripheral neutrophils to lymphocytes, possibly reflecting an imbalance in innate versus adaptive immunity, is related to greater Aβ deposition and longitudinal cognitive decline. As the field moves toward blood-based biomarkers of AD, the altered balance of innate versus adaptive immunity could be a useful biomarker of underlying pathology and may also serve as a potential therapeutic target.


Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice.

  • Sinem Karaman‎ et al.
  • Scientific reports‎
  • 2016‎

Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance.


Cell-based RNAi screening and high-content analysis in primary calvarian osteoblasts applied to identification of osteoblast differentiation regulators.

  • Mubashir Ahmad‎ et al.
  • Scientific reports‎
  • 2018‎

Osteoblasts are responsible for the maintenance of bone homeostasis. Deregulation of their differentiation is etiologically linked to several bone disorders, making this process an important target for therapeutic intervention. Systemic identification of osteoblast regulators has been hampered by the unavailability of physiologically relevant in vitro systems suitable for efficient RNAi and for differentiation read-outs compatible with fluorescent microscopy-based high-content analysis (HCA). Here, we report a new method for identification of osteoblast differentiation regulators by combining siRNA transfection in physiologically relevant cells with high-throughput screening (HTS). Primary mouse calvarial osteoblasts were seeded in 384-well format and reverse transfected with siRNAs and their cell number and differentiation was assayed by HCA. Automated image acquisition allowed high-throughput analyses and classification of single cell features. The physiological relevance, reproducibility, and sensitivity of the method were validated using known regulators of osteoblast differentiation. The application of HCA to siRNAs against expression of 320 genes led to the identification of five potential suppressors and 60 activators of early osteoblast differentiation. The described method and the associated analysis pipeline are not restricted to RNAi-based screening, but can be adapted to large-scale drug HTS or to small-scale targeted experiments, to identify new critical factors important for early osteoblastogenesis.


Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations.

  • Xiu-Feng Huang‎ et al.
  • Scientific reports‎
  • 2017‎

Ocular coloboma is a common eye malformation arising from incomplete closure of the human optic fissure during development. Multiple genetic mutations contribute to the disease process, showing extensive genetic heterogeneity and complexity of coloboma spectrum diseases. In this study, we aimed to unravel the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis. The subjects were recruited and underwent specialized ophthalmologic clinical examination. A combination of whole exome sequencing (WES), homozygosity mapping, and comprehensive variant analyses was performed to uncover the causative mutation. Only one homozygous mutation (c.113 T > C, p.I38T) in RAX gene survived our strict variant filtering process, consistent with an autosomal recessive inheritance pattern. This mutation segregated perfectly in the family and is located in a highly conserved functional domain. Crystal structure modeling indicated that I38T affected the protein structure. We describe a patient from a consanguineous Chinese family with unusual coloboma, proven to harbor a novel RAX mutation (c.113 T > C, p.I38T, homozygous), expanding the phenotypic variability of ocular coloboma and RAX mutations.


HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide.

  • Romain Girard‎ et al.
  • Scientific reports‎
  • 2019‎

Mutations in the HNF4A gene cause MODY1 and are associated with an increased risk of Type 2 diabetes mellitus. On the other hand, incretins are hormones that potentiate reductions in blood glucose levels. Given the established role of incretin-based therapy to treat diabetes and metabolic disorders, we investigated a possible regulatory link between intestinal epithelial HNF4α and glucose-dependent insulinotropic polypeptide (GIP), an incretin that is specifically produced by gut enteroendocrine cells. Conditional deletion of HNF4α in the whole intestinal epithelium was achieved by crossing Villin-Cre and Hnf4αloxP/loxP C57BL/6 mouse models. GIP expression was measured by qPCR, immunofluorescence and ELISA. Gene transcription was assessed by luciferase and electrophoretic mobility shift assays. Metabolic parameters were analyzed by indirect calorimetry and dual-energy X-ray absorptiometry. HNF4α specific deletion in the intestine led to a reduction in GIP. HNF4α was able to positively control Gip transcriptional activity in collaboration with GATA-4 transcription factor. Glucose homeostasis and glucose-stimulated insulin secretion remained unchanged in HNF4α deficient mice. Changes in GIP production in these mice did not impact nutrition or energy metabolism under normal physiology but led to a reduction of bone area and mineral content, a well described physiological consequence of GIP deficiency. Our findings point to a novel regulatory role between intestinal HNF4α and GIP with possible functional impact on bone density.


Clustering of Alzheimer's and Parkinson's disease based on genetic burden of shared molecular mechanisms.

  • Mohammad Asif Emon‎ et al.
  • Scientific reports‎
  • 2020‎

One of the visions of precision medicine has been to re-define disease taxonomies based on molecular characteristics rather than on phenotypic evidence. However, achieving this goal is highly challenging, specifically in neurology. Our contribution is a machine-learning based joint molecular subtyping of Alzheimer's (AD) and Parkinson's Disease (PD), based on the genetic burden of 15 molecular mechanisms comprising 27 proteins (e.g. APOE) that have been described in both diseases. We demonstrate that our joint AD/PD clustering using a combination of sparse autoencoders and sparse non-negative matrix factorization is reproducible and can be associated with significant differences of AD and PD patient subgroups on a clinical, pathophysiological and molecular level. Hence, clusters are disease-associated. To our knowledge this work is the first demonstration of a mechanism based stratification in the field of neurodegenerative diseases. Overall, we thus see this work as an important step towards a molecular mechanism-based taxonomy of neurological disorders, which could help in developing better targeted therapies in the future by going beyond classical phenotype based disease definitions.


Integration of transcriptomic and genomic data suggests candidate mechanisms for APOE4-mediated pathogenic action in Alzheimer's disease.

  • Laura Caberlotto‎ et al.
  • Scientific reports‎
  • 2016‎

Among the genetic factors known to increase the risk of late onset Alzheimer's diseases (AD), the presence of the apolipoproteine e4 (APOE4) allele has been recognized as the one with the strongest effect. However, despite decades of research, the pathogenic role of APOE4 in Alzheimer's disease has not been clearly elucidated yet. In order to investigate the pathogenic action of APOE4, we applied a systems biology approach to the analysis of transcriptomic and genomic data of APOE44 vs. APOE33 allele carriers affected by Alzheimer's disease. Network analysis combined with a novel technique for biomarker computation allowed the identification of an alteration in aging-associated processes such as inflammation, oxidative stress and metabolic pathways, indicating that APOE4 possibly accelerates pathological processes physiologically induced by aging. Subsequent integration with genomic data indicates that the Notch pathway could be the nodal molecular mechanism altered in APOE44 allele carriers with Alzheimer's disease. Interestingly, PSEN1 and APP, genes whose mutation are known to be linked to early onset Alzheimer's disease, are closely linked to this pathway. In conclusion, APOE4 role on inflammation and oxidation through the Notch signaling pathway could be crucial in elucidating the risk factors of Alzheimer's disease.


Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross-sectional multi-cohort study.

  • Walter H L Pinaya‎ et al.
  • Scientific reports‎
  • 2021‎

Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n = 206) and mild cognitive impairment (n = 354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. To promote open science, we are making all scripts and the trained models available to the wider research community.


Stability of graph theoretical measures in structural brain networks in Alzheimer's disease.

  • Gustav Mårtensson‎ et al.
  • Scientific reports‎
  • 2018‎

Graph analysis has become a popular approach to study structural brain networks in neurodegenerative disorders such as Alzheimer's disease (AD). However, reported results across similar studies are often not consistent. In this paper we investigated the stability of the graph analysis measures clustering, path length, global efficiency and transitivity in a cohort of AD (N = 293) and control subjects (N = 293). More specifically, we studied the effect that group size and composition, choice of neuroanatomical atlas, and choice of cortical measure (thickness or volume) have on binary and weighted network properties and relate them to the magnitude of the differences between groups of AD and control subjects. Our results showed that specific group composition heavily influenced the network properties, particularly for groups with less than 150 subjects. Weighted measures generally required fewer subjects to stabilize and all assessed measures showed robust significant differences, consistent across atlases and cortical measures. However, all these measures were driven by the average correlation strength, which implies a limitation of capturing more complex features in weighted networks. In binary graphs, significant differences were only found in the global efficiency and transitivity measures when using cortical thickness measures to define edges. The findings were consistent across the two atlases, but no differences were found when using cortical volumes. Our findings merits future investigations of weighted brain networks and suggest that cortical thickness measures should be preferred in future AD studies if using binary networks. Further, studying cortical networks in small cohorts should be complemented by analyzing smaller, subsampled groups to reduce the risk that findings are spurious.


Identification of candidate genes and pathways in retinopathy of prematurity by whole exome sequencing of preterm infants enriched in phenotypic extremes.

  • Sang Jin Kim‎ et al.
  • Scientific reports‎
  • 2021‎

Retinopathy of prematurity (ROP) is a vasoproliferative retinal disease affecting premature infants. In addition to prematurity itself and oxygen treatment, genetic factors have been suggested to predispose to ROP. We aimed to identify potentially pathogenic genes and biological pathways associated with ROP by analyzing variants from whole exome sequencing (WES) data of premature infants. As part of a multicenter ROP cohort study, 100 non-Hispanic Caucasian preterm infants enriched in phenotypic extremes were subjected to WES. Gene-based testing was done on coding nonsynonymous variants. Genes showing enrichment of qualifying variants in severe ROP compared to mild or no ROP from gene-based tests with adjustment for gestational age and birth weight were selected for gene set enrichment analysis (GSEA). Mean BW of included infants with pre-plus, type-1 or type 2 ROP including aggressive posterior ROP (n = 58) and mild or no ROP (n = 42) were 744 g and 995 g, respectively. No single genes reached genome-wide significance that could account for a severe phenotype. GSEA identified two significantly associated pathways (smooth endoplasmic reticulum and vitamin C metabolism) after correction for multiple tests. WES of premature infants revealed potential pathways that may be important in the pathogenesis of ROP and in further genetic studies.


Genome-Wide Association Study of Brain Connectivity Changes for Alzheimer's Disease.

  • Samar S M Elsheikh‎ et al.
  • Scientific reports‎
  • 2020‎

Variations in the human genome have been found to be an essential factor that affects susceptibility to Alzheimer's disease. Genome-wide association studies (GWAS) have identified genetic loci that significantly contribute to the risk of Alzheimers. The availability of genetic data, coupled with brain imaging technologies have opened the door for further discoveries, by using data integration methodologies and new study designs. Although methods have been proposed for integrating image characteristics and genetic information for studying Alzheimers, the measurement of disease is often taken at a single time point, therefore, not allowing the disease progression to be taken into consideration. In longitudinal settings, we analyzed neuroimaging and single nucleotide polymorphism datasets obtained from the Alzheimer's Disease Neuroimaging Initiative for three clinical stages of the disease, including healthy control, early mild cognitive impairment and Alzheimer's disease subjects. We conducted a GWAS regressing the absolute change of global connectivity metrics on the genetic variants, and used the GWAS summary statistics to compute the gene and pathway scores. We observed significant associations between the change in structural brain connectivity defined by tractography and genes, which have previously been reported to biologically manipulate the risk and progression of certain neurodegenerative disorders, including Alzheimer's disease.


Common BACE2 Polymorphisms are Associated with Altered Risk for Alzheimer's Disease and CSF Amyloid Biomarkers in APOE ε4 Non-Carriers.

  • Matt Huentelman‎ et al.
  • Scientific reports‎
  • 2019‎

It was recently suggested that beta-site amyloid precursor protein (APP)-cleaving enzyme 2 (BACE2) functions as an amyloid beta (Aβ)-degrading enzyme; in addition to its better understood role as an APP secretase. Due to this finding we sought to understand the possible genetic risk contributed by the BACE2 locus to the development of late-onset Alzheimer's disease (AD). In this study, we report that common single nucleotide polymorphism (SNP) variation in BACE2 is associated with altered AD risk in apolipoprotein E gene (APOE) epsilon 4 variant (ε4) non-carriers. In addition, in ε4 non-carriers diagnosed with AD or mild cognitive impairment (MCI), SNPs within the BACE2 locus are associated with cerebrospinal fluid (CSF) levels of Aβ1-42. Further, SNP variants in BACE2 are also associated with BACE2 RNA expression levels suggesting a potential mechanism for the CSF Aβ1-42 findings. Lastly, overexpression of BACE2 in vitro resulted in decreased Aβ1-40 and Aβ1-42 fragments in a cell line model of Aβ production. These findings suggest that genetic variation at the BACE2 locus modifies AD risk for those individuals who don't carry the ε4 variant of APOE. Further, our data indicate that the biological mechanism associated with this altered risk is linked to amyloid generation or clearance possibly through BACE2 expression changes.


Comparative Network Analysis of Patients with Non-Small Cell Lung Cancer and Smokers for Representing Potential Therapeutic Targets.

  • Mehrdad Pazhouhandeh‎ et al.
  • Scientific reports‎
  • 2017‎

Cigarette smoking is the leading cause of lung cancer worldwide. In this study, we evaluated the serum autoantibody (AAb) repertoires of non-small cell lung cancer (NSCLC) patients and smokers (SM), leading to the identification of overactivated pathways and hubs involved in the pathogenesis of NSCLC. Surface- and solution-phase biopanning were performed on immunoglobulin G purified from the sera of NSCLC and SM groups. In total, 20 NSCLC- and 12 SM-specific peptides were detected, which were used to generate NSCLC and SM protein datasets. NSCLC- and SM-related proteins were visualized using STRING and Gephi, and their modules were analyzed using Enrichr. By integrating the overrepresented pathways such as pathways in cancer, epithelial growth factor receptor, c-Met, interleukin-4 (IL-4) and IL-6 signaling pathways, along with a set of proteins (e.g. phospholipase D (PLD), IL-4 receptor, IL-17 receptor, laminins, collagens, and mucins) into the PLD pathway and inflammatory cytokines network as the most critical events in both groups, two super networks were made to elucidate new aspects of NSCLC pathogenesis and to determine the influence of cigarette smoking on tumour formation. Taken together, assessment of the AAb repertoires using a systems biology approach can delineate the hidden events involved in various disorders.


The autism risk factor CHD8 is a chromatin activator in human neurons and functionally dependent on the ERK-MAPK pathway effector ELK1.

  • Bahareh Haddad Derafshi‎ et al.
  • Scientific reports‎
  • 2022‎

The chromodomain helicase DNA-binding protein CHD8 is the most frequently mutated gene in autism spectrum disorder. Despite its prominent disease involvement, little is known about its molecular function in the human brain. CHD8 is a chromatin regulator which binds to the promoters of actively transcribed genes through genomic targeting mechanisms which have yet to be fully defined. By generating a conditional loss-of-function and an endogenously tagged allele in human pluripotent stem cells, we investigated the molecular function and the interaction of CHD8 with chromatin in human neurons. Chromatin accessibility analysis and transcriptional profiling revealed that CHD8 functions as a transcriptional activator at its target genes in human neurons. Furthermore, we found that CHD8 chromatin targeting is cell context-dependent. In human neurons, CHD8 preferentially binds at ETS motif-enriched promoters. This enrichment is particularly prominent on the promoters of genes whose expression significantly changes upon the loss of CHD8. Indeed, among the ETS transcription factors, we identified ELK1 as being most highly correlated with CHD8 expression in primary human fetal and adult cortical neurons and most highly expressed in our stem cell-derived neurons. Remarkably, ELK1 was necessary to recruit CHD8 specifically to ETS motif-containing sites. These findings imply that ELK1 and CHD8 functionally cooperate to regulate gene expression and chromatin states at MAPK/ERK target genes in human neurons. Our results suggest that the MAPK/ERK/ELK1 axis potentially contributes to the pathogenesis caused by CHD8 mutations in human neurodevelopmental disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: