Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 184 papers

Development of a physiologically-based pharmacokinetic pediatric brain model for prediction of cerebrospinal fluid drug concentrations and the influence of meningitis.

  • Laurens F M Verscheijden‎ et al.
  • PLoS computational biology‎
  • 2019‎

Different pediatric physiologically-based pharmacokinetic (PBPK) models have been described incorporating developmental changes that influence plasma drug concentrations. Drug disposition into cerebrospinal fluid (CSF) is also subject to age-related variation and can be further influenced by brain diseases affecting blood-brain barrier integrity, like meningitis. Here, we developed a generic pediatric brain PBPK model to predict CSF concentrations of drugs that undergo passive transfer, including age-appropriate parameters. The model was validated for the analgesics paracetamol, ibuprofen, flurbiprofen and naproxen, and for a pediatric meningitis population by empirical optimization of the blood-brain barrier penetration of the antibiotic meropenem. Plasma and CSF drug concentrations derived from the literature were used to perform visual predictive checks and to calculate ratios between simulated and observed area under the concentration curves (AUCs) in order to evaluate model performance. Model-simulated concentrations were comparable to observed data over a broad age range (3 months-15 years postnatal age) for all drugs investigated. The ratios between observed and simulated AUCs (AUCo/AUCp) were within 2-fold difference both in plasma (range 0.92-1.09) and in CSF (range 0.64-1.23) indicating acceptable model performance. The model was also able to describe disease-mediated changes in neonates and young children (<3m postnatal age) related to meningitis and sepsis (range AUCo/AUCp plasma: 1.64-1.66, range AUCo/AUCp CSF: 1.43-1.73). Our model provides a new computational tool to predict CSF drug concentrations in children with and without meningitis and can be used as a template model for other compounds that passively enter the CNS.


Differential regulatory network-based quantification and prioritization of key genes underlying cancer drug resistance based on time-course RNA-seq data.

  • Jiajun Zhang‎ et al.
  • PLoS computational biology‎
  • 2019‎

Drug resistance is a major cause for the failure of cancer chemotherapy or targeted therapy. However, the molecular regulatory mechanisms controlling the dynamic evolvement of drug resistance remain poorly understood. Thus, it is important to develop methods for identifying key gene regulatory mechanisms of the resistance to specific drugs. In this study, we developed a data-driven computational framework, DryNetMC, using a differential regulatory network-based modeling and characterization strategy to quantify and prioritize key genes underlying cancer drug resistance. The DryNetMC does not only infer gene regulatory networks (GRNs) via an integrated approach, but also characterizes and quantifies dynamical network properties for measuring node importance. We used time-course RNA-seq data from glioma cells treated with dbcAMP (a cAMP activator) as a realistic case to reconstruct the GRNs for sensitive and resistant cells. Based on a novel node importance index that comprehensively quantifies network topology, network entropy and expression dynamics, the top ranked genes were verified to be predictive of the drug sensitivities of different glioma cell lines, in comparison with other existing methods. The proposed method provides a quantitative approach to gain insights into the dynamic adaptation and regulatory mechanisms of cancer drug resistance and sheds light on the design of novel biomarkers or targets for predicting or overcoming drug resistance.


Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study.

  • Lun Yang‎ et al.
  • PLoS computational biology‎
  • 2011‎

In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR) is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs.


Target-agnostic drug prediction integrated with medical record analysis uncovers differential associations of statins with increased survival in COVID-19 patients.

  • Megan M Sperry‎ et al.
  • PLoS computational biology‎
  • 2023‎

Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.


Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer's disease drug repurposing.

  • You Wu‎ et al.
  • PLoS computational biology‎
  • 2022‎

Predictive modeling of drug-induced gene expressions is a powerful tool for phenotype-based compound screening and drug repurposing. State-of-the-art machine learning methods use a small number of fixed cell lines as a surrogate for predicting actual expressions in a new cell type or tissue, although it is well known that drug responses depend on a cellular context. Thus, the existing approach has limitations when applied to personalized medicine, especially for many understudied diseases whose molecular profiles are dramatically different from those characterized in the training data. Besides the gene expression, dose-dependent cell viability is another important phenotype readout and is more informative than conventional summary statistics (e.g., IC50) for characterizing clinical drug efficacy and toxicity. However, few computational methods can reliably predict the dose-dependent cell viability. To address the challenges mentioned above, we designed a new deep learning model, MultiDCP, to predict cellular context-dependent gene expressions and cell viability on a specific dosage. The novelties of MultiDCP include a knowledge-driven gene expression profile transformer that enables context-specific phenotypic response predictions of novel cells or tissues, integration of multiple diverse labeled and unlabeled omics data, the joint training of the multiple prediction tasks, and a teacher-student training procedure that allows us to utilize unreliable data effectively. Comprehensive benchmark studies suggest that MultiDCP outperforms state-of-the-art methods with unseen cell lines that are dissimilar from the cell lines in the supervised training in terms of gene expressions. The predicted drug-induced gene expressions demonstrate a stronger predictive power than noisy experimental data for downstream tasks. Thus, MultiDCP is a useful tool for transcriptomics-based drug repurposing and compound screening that currently rely on noisy high-throughput experimental data. We applied MultiDCP to repurpose individualized drugs for Alzheimer's disease in terms of efficacy and toxicity, suggesting that MultiDCP is a potentially powerful tool for personalized drug discovery.


Expanding the druggable space of the LSD1/CoREST epigenetic target: new potential binding regions for drug-like molecules, peptides, protein partners, and chromatin.

  • James C Robertson‎ et al.
  • PLoS computational biology‎
  • 2013‎

Lysine specific demethylase-1 (LSD1/KDM1A) in complex with its corepressor protein CoREST is a promising target for epigenetic drugs. No therapeutic that targets LSD1/CoREST, however, has been reported to date. Recently, extended molecular dynamics (MD) simulations indicated that LSD1/CoREST nanoscale clamp dynamics is regulated by substrate binding and highlighted key hinge points of this large-scale motion as well as the relevance of local residue dynamics. Prompted by the urgent need for new molecular probes and inhibitors to understand LSD1/CoREST interactions with small-molecules, peptides, protein partners, and chromatin, we undertake here a configurational ensemble approach to expand LSD1/CoREST druggability. The independent algorithms FTMap and SiteMap and our newly developed Druggable Site Visualizer (DSV) software tool were used to predict and inspect favorable binding sites. We find that the hinge points revealed by MD simulations at the SANT2/Tower interface, at the SWIRM/AOD interface, and at the AOD/Tower interface are new targets for the discovery of molecular probes to block association of LSD1/CoREST with chromatin or protein partners. A fourth region was also predicted from simulated configurational ensembles and was experimentally validated to have strong binding propensity. The observation that this prediction would be prevented when using only the X-ray structures available (including the X-ray structure bound to the same peptide) underscores the relevance of protein dynamics in protein interactions. A fifth region was highlighted corresponding to a small pocket on the AOD domain. This study sets the basis for future virtual screening campaigns targeting the five novel regions reported herein and for the design of LSD1/CoREST mutants to probe LSD1/CoREST binding with chromatin and various protein partners.


Navigating the multilayered organization of eukaryotic signaling: a new trend in data integration.

  • Tapesh Santra‎ et al.
  • PLoS computational biology‎
  • 2014‎

The ever-increasing capacity of biological molecular data acquisition outpaces our ability to understand the meaningful relationships between molecules in a cell. Multiple databases were developed to store and organize these molecular data. However, emerging fundamental questions about concerted functions of these molecules in hierarchical cellular networks are poorly addressed. Here we review recent advances in the development of publically available databases that help us analyze the signal integration and processing by multilayered networks that specify biological responses in model organisms and human cells.


Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

  • Robert Kalescky‎ et al.
  • PLoS computational biology‎
  • 2016‎

Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.


DSCN: Double-target selection guided by CRISPR screening and network.

  • Enze Liu‎ et al.
  • PLoS computational biology‎
  • 2022‎

Cancer is a complex disease with usually multiple disease mechanisms. Target combination is a better strategy than a single target in developing cancer therapies. However, target combinations are generally more difficult to be predicted. Current CRISPR-cas9 technology enables genome-wide screening for potential targets, but only a handful of genes have been screend as target combinations. Thus, an effective computational approach for selecting candidate target combinations is highly desirable. Selected target combinations also need to be translational between cell lines and cancer patients. We have therefore developed DSCN (double-target selection guided by CRISPR screening and network), a method that matches expression levels in patients and gene essentialities in cell lines through spectral-clustered protein-protein interaction (PPI) network. In DSCN, a sub-sampling approach is developed to model first-target knockdown and its impact on the PPI network, and it also facilitates the selection of a second target. Our analysis first demonstrated a high correlation of the DSCN sub-sampling-based gene knockdown model and its predicted differential gene expressions using observed gene expression in 22 pancreatic cell lines before and after MAP2K1 and MAP2K2 inhibition (R2 = 0.75). In DSCN algorithm, various scoring schemes were evaluated. The 'diffusion-path' method showed the most significant statistical power of differentialting known synthetic lethal (SL) versus non-SL gene pairs (P = 0.001) in pancreatic cancer. The superior performance of DSCN over existing network-based algorithms, such as OptiCon and VIPER, in the selection of target combinations is attributable to its ability to calculate combinations for any gene pairs, whereas other approaches focus on the combinations among optimized regulators in the network. DSCN's computational speed is also at least ten times fast than that of other methods. Finally, in applying DSCN to predict target combinations and drug combinations for individual samples (DSCNi), DSCNi showed high correlation between target combinations predicted and real synergistic combinations (P = 1e-5) in pancreatic cell lines. In summary, DSCN is a highly effective computational method for the selection of target combinations.


A computational approach to analyze the mechanism of action of the kinase inhibitor bafetinib.

  • Thomas R Burkard‎ et al.
  • PLoS computational biology‎
  • 2010‎

Prediction of drug action in human cells is a major challenge in biomedical research. Additionally, there is strong interest in finding new applications for approved drugs and identifying potential side effects. We present a computational strategy to predict mechanisms, risks and potential new domains of drug treatment on the basis of target profiles acquired through chemical proteomics. Functional protein-protein interaction networks that share one biological function are constructed and their crosstalk with the drug is scored regarding function disruption. We apply this procedure to the target profile of the second-generation BCR-ABL inhibitor bafetinib which is in development for the treatment of imatinib-resistant chronic myeloid leukemia. Beside the well known effect on apoptosis, we propose potential treatment of lung cancer and IGF1R expressing blast crisis.


Distinctive Behaviors of Druggable Proteins in Cellular Networks.

  • Costas Mitsopoulos‎ et al.
  • PLoS computational biology‎
  • 2015‎

The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/.


Pan-cancer characterization of ncRNA synergistic competition uncovers potential carcinogenic biomarkers.

  • Junpeng Zhang‎ et al.
  • PLoS computational biology‎
  • 2023‎

Non-coding RNAs (ncRNAs) act as important modulators of gene expression and they have been confirmed to play critical roles in the physiology and development of malignant tumors. Understanding the synergism of multiple ncRNAs in competing endogenous RNA (ceRNA) regulation can provide important insights into the mechanisms of malignant tumors caused by ncRNA regulation. In this work, we present a framework, SCOM, for identifying ncRNA synergistic competition. We systematically construct the landscape of ncRNA synergistic competition across 31 malignant tumors, and reveal that malignant tumors tend to share hub ncRNAs rather than the ncRNA interactions involved in the synergistic competition. In addition, the synergistic competition ncRNAs (i.e. ncRNAs involved in the synergistic competition) are likely to be involved in drug resistance, contribute to distinguishing molecular subtypes of malignant tumors, and participate in immune regulation. Furthermore, SCOM can help to infer ncRNA synergistic competition across malignant tumors and uncover potential diagnostic and prognostic biomarkers of malignant tumors. Altogether, the SCOM framework (https://github.com/zhangjunpeng411/SCOM/) and the resulting web-based database SCOMdb (https://comblab.cn/SCOMdb/) serve as a useful resource for exploring ncRNA regulation and to accelerate the identification of carcinogenic biomarkers.


Identification of pathways associated with chemosensitivity through network embedding.

  • Sheng Wang‎ et al.
  • PLoS computational biology‎
  • 2019‎

Basal gene expression levels have been shown to be predictive of cellular response to cytotoxic treatments. However, such analyses do not fully reveal complex genotype- phenotype relationships, which are partly encoded in highly interconnected molecular networks. Biological pathways provide a complementary way of understanding drug response variation among individuals. In this study, we integrate chemosensitivity data from a large-scale pharmacogenomics study with basal gene expression data from the CCLE project and prior knowledge of molecular networks to identify specific pathways mediating chemical response. We first develop a computational method called PACER, which ranks pathways for enrichment in a given set of genes using a novel network embedding method. It examines a molecular network that encodes known gene-gene as well as gene-pathway relationships, and determines a vector representation of each gene and pathway in the same low-dimensional vector space. The relevance of a pathway to the given gene set is then captured by the similarity between the pathway vector and gene vectors. To apply this approach to chemosensitivity data, we identify genes whose basal expression levels in a panel of cell lines are correlated with cytotoxic response to a compound, and then rank pathways for relevance to these response-correlated genes using PACER. Extensive evaluation of this approach on benchmarks constructed from databases of compound target genes and large collections of drug response signatures demonstrates its advantages in identifying compound-pathway associations compared to existing statistical methods of pathway enrichment analysis. The associations identified by PACER can serve as testable hypotheses on chemosensitivity pathways and help further study the mechanisms of action of specific cytotoxic drugs. More broadly, PACER represents a novel technique of identifying enriched properties of any gene set of interest while also taking into account networks of known gene-gene relationships and interactions.


A computational approach to finding novel targets for existing drugs.

  • Yvonne Y Li‎ et al.
  • PLoS computational biology‎
  • 2011‎

Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects.


AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.

  • Pradeep Anand Ravindranath‎ et al.
  • PLoS computational biology‎
  • 2015‎

Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR-AutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 -a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 -a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down-weighting the receptor internal energy improves the ranking of correctly docked poses and that runtime for AutoDockFR scales linearly when side-chain flexibility is added.


Analysis of individual protein regions provides novel insights on cancer pharmacogenomics.

  • Eduard Porta Pardo‎ et al.
  • PLoS computational biology‎
  • 2015‎

The promise of personalized cancer medicine cannot be fulfilled until we gain better understanding of the connections between the genomic makeup of a patient's tumor and its response to anticancer drugs. Several datasets that include both pharmacologic profiles of cancer cell lines as well as their genomic alterations have been recently developed and extensively analyzed. However, most analyses of these datasets assume that mutations in a gene will have the same consequences regardless of their location. While this assumption might be correct in some cases, such analyses may miss subtler, yet still relevant, effects mediated by mutations in specific protein regions. Here we study such perturbations by separating effects of mutations in different protein functional regions (PFRs), including protein domains and intrinsically disordered regions. Using this approach, we have been able to identify 171 novel associations between mutations in specific PFRs and changes in the activity of 24 drugs that couldn't be recovered by traditional gene-centric analyses. Our results demonstrate how focusing on individual protein regions can provide novel insights into the mechanisms underlying the drug sensitivity of cancer cell lines. Moreover, while these new correlations are identified using only data from cancer cell lines, we have been able to validate some of our predictions using data from actual cancer patients. Our findings highlight how gene-centric experiments (such as systematic knock-out or silencing of individual genes) are missing relevant effects mediated by perturbations of specific protein regions. All the associations described here are available from http://www.cancer3d.org.


Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.

  • John A Capra‎ et al.
  • PLoS computational biology‎
  • 2009‎

Identifying a protein's functional sites is an important step towards characterizing its molecular function. Numerous structure- and sequence-based methods have been developed for this problem. Here we introduce ConCavity, a small molecule binding site prediction algorithm that integrates evolutionary sequence conservation estimates with structure-based methods for identifying protein surface cavities. In large-scale testing on a diverse set of single- and multi-chain protein structures, we show that ConCavity substantially outperforms existing methods for identifying both 3D ligand binding pockets and individual ligand binding residues. As part of our testing, we perform one of the first direct comparisons of conservation-based and structure-based methods. We find that the two approaches provide largely complementary information, which can be combined to improve upon either approach alone. We also demonstrate that ConCavity has state-of-the-art performance in predicting catalytic sites and drug binding pockets. Overall, the algorithms and analysis presented here significantly improve our ability to identify ligand binding sites and further advance our understanding of the relationship between evolutionary sequence conservation and structural and functional attributes of proteins. Data, source code, and prediction visualizations are available on the ConCavity web site (http://compbio.cs.princeton.edu/concavity/).


Discovery of novel dual adenosine A1/A2A receptor antagonists using deep learning, pharmacophore modeling and molecular docking.

  • Mukuo Wang‎ et al.
  • PLoS computational biology‎
  • 2021‎

Adenosine receptors (ARs) have been demonstrated to be potential therapeutic targets against Parkinson's disease (PD). In the present study, we describe a multistage virtual screening approach that identifies dual adenosine A1 and A2A receptor antagonists using deep learning, pharmacophore models, and molecular docking methods. Nineteen hits from the ChemDiv library containing 1,178,506 compounds were selected and further tested by in vitro assays (cAMP functional assay and radioligand binding assay); of these hits, two compounds (C8 and C9) with 1,2,4-triazole scaffolds possessing the most potent binding affinity and antagonistic activity for A1/A2A ARs at the nanomolar level (pKi of 7.16-7.49 and pIC50 of 6.31-6.78) were identified. Further molecular dynamics (MD) simulations suggested similarly strong binding interactions of the complexes between the A1/A2A ARs and two compounds (C8 and C9). Notably, the 1,2,4-triazole derivatives (compounds C8 and C9) were identified as the most potent dual A1/A2A AR antagonists in our study and could serve as a basis for further development. The effective multistage screening approach developed in this study can be utilized to identify potent ligands for other drug targets.


Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer.

  • Karen E Ross‎ et al.
  • PLoS computational biology‎
  • 2023‎

We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.


Identifying causal genes and dysregulated pathways in complex diseases.

  • Yoo-Ah Kim‎ et al.
  • PLoS computational biology‎
  • 2011‎

In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: