Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 886 papers

The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits.

  • Ben J Wu‎ et al.
  • Scientific reports‎
  • 2019‎

Coronary artery bypass grafting is among the most commonly performed of all cardiovascular surgical procedures. However, graft failure due to stenosis reduces the long-term benefit of the intervention. This study asks if elevating plasma high density lipoprotein cholesterol (HDL-C) levels by inhibition of cholesteryl ester transfer protein (CETP) activity with des-fluoro-anacetrapib, an analog of the CETP inhibitor anacetrapib, prevents vein bypass-induced neointimal hyperplasia. NZW rabbits were placed on a normal chow diet or chow containing 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Bypass grafting of the jugular vein to the common carotid artery was performed 2 weeks after starting dietary des-fluoro-anacetrapib supplementation. The animals were euthanised 4 weeks post-bypass grafting. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma CETP activity by 89 ± 6.9%, increased plasma apolipoprotein A-I levels by 24 ± 5.5%, increased plasma HDL-C levels by 93 ± 26% and reduced intimal hyperplasia in the grafted vein by 38 ± 6.2%. Des-fluoro-anacetrapib treatment was also associated with decreased bypass grafting-induced endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), endothelial dysfunction, and smooth muscle cell (SMC) proliferation in the grafted vein. In conclusion, increasing HDL-C levels by inhibiting CETP activity is associated with inhibition of intimal hyperplasia in grafted veins, reduced inflammatory responses, improved endothelial function, and decreased SMC proliferation.


Generation of an iPSC line (SDQLCHi015-A) from peripheral blood mononuclear cells of a patient with mental retardation type 15 carrying c.1007_1011del, p.(Ile336fs) in CUL4B gene.

  • Jingyun Guan‎ et al.
  • Stem cell research‎
  • 2019‎

CUL4B gene mutation can cause intelligence deficiency 15, a syndromic form of X-linked mental retardation characterized by severe intellectual deficit associated with short stature, craniofacial dysmorphism, speech delay and impairment, tremor and gait ataxia. Here, we generated iPSCs from a Chinese patient with c.1007_1011del (p.(Ile336fs)) in CUL4B gene by reprogramming peripheral blood mononuclear cells with non-integrating vectors. The generated iPSC line (SDQLCHi015-A) expresses pluripotency markers, presents a normal karyotype and is able to differentiate into three germ layers.


OsPAL2-1 Mediates Allelopathic Interactions Between Rice and Specific Microorganisms in the Rhizosphere Ecosystem.

  • Yingzhe Li‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The use of plant allelopathy to control weeds in the field has been generally recognized as a win-win strategy because it is an environmentally friendly and resource-saving method. The mechanism of this natural weed-control method relies on allelochemicals, the rhizosphere microbiome, and their bio-interaction, and exploring the link between allelochemicals and specific microbes helps accelerate the application of allelopathic characteristics in farming. In this study, we used allelopathic rice PI312777 (PI), its genetically modified OsPAL2-1 repression (PR) or overexpression (PO) lines, and non-allelopathic rice Lemont (Le) as donor plants to reveal the bio-interaction between rice allelochemicals and rhizosphere specific microorganisms. The results showed a higher content of phenolic acid exudation from the roots of PI than those of Le, which resulted in a significantly increased population of Myxococcus in the rhizosphere soil. Transgenic PO lines exhibited increasing exudation of phenolic acid, which led to the population of Myxococcus xanthus in the rhizosphere soil of PO to be significantly increased, while PR showed the opposite result in comparison with wild type PI. Exogenous application of phenolic acid induced the growth of M. xanthus, and the expressions of chemotaxis-related genes were up-regulated in M. xanthus. In addition, quercetin was identified in the culture medium; according to the bioassay determination, a quercetin concentration of 0.53 mM inhibited the root length by 60.59%. Our study indicates that OsPAL2-1 is among the efficient genes that regulate rice allelopathy by controlling the synthesis of phenolic acid allelochemicals, and phenolic acid (ferulic acid, FA) induces the chemotactic aggregation of M. xanthus, which promoted the proliferation and aggregation of this microbe. The potential allelochemical, quercetin was generated from the FA-induced M. xanthus cultured medium.


Replication of the Association Between Keratoconus and Polymorphisms in PNPLA2 and MAML2 in a Han Chinese Population.

  • Jing Zhang‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Keratoconus (KC) is a complex ocular disease that is affected by both genetic and non-genetic triggers. A recent genome-wide association study (GWAS) identified a genome-wide significant locus for KC in the region of PNPLA2 (rs61876744), as well as a suggestive signal in the MAML2 (rs10831500) locus. In order to validate their findings, here we performed a replication study of the Han Chinese population, with 120 sporadic KC cases and 206 gender and age matched control subjects, utilizing the TaqMan SNP genotyping assays. SNP rs10831500, as well as two proxy SNPs for rs61876744, named rs7942159 and rs28633403, were subjected to genotyping. However, we did not find a significant difference (P > 0.05) in all the three genotyped SNPs between KC cases and the controls. A further meta-analysis on four previous cohorts of white patients and this Han Chinese cohort showed a significant genetic heterogeneity within the replicated loci. Thus, the current study suggests that SNP rs61876744 (or its proxy SNPs) and rs10831500 might not be associated with KC susceptibility in this Han Chinese cohort, and a large-scale association analysis focusing on the loci is therefore warranted in further investigations.


Proteomic analysis of extracellular vesicles released from heat-stroked hepatocytes reveals promotion of programmed cell death pathway.

  • Yue Li‎ et al.
  • Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie‎
  • 2020‎

Liver injury is a common complication of severe heat stroke (HS). Extracellular vesicles (EVs) are part of a novel pathway mediating intercellular communication. Whether EVs are involved in the pathogenesis underlying HS-induced liver injury remains unknown. Here, we explored the role of hepatocyte EVs in HS-induced liver injury and their protein regulation patterns after HS induction. Isobaric tags for relative and absolute quantification technology (iTRAQ) and liquid chromatography-tandem mass spectrometry analysis identified changes in the proteomic profiles of hepatocyte-derived heat-stroked EVs, and we identified 53 up-regulated proteins. Bioinformatics analysis verified that the regulation of programmed cell death was the most significant altered pathway. To clarify the effect of HS hepatocyte-derived EVs in inducing hepatocyte-programmed death and injury, they were added to recipient hepatocytes and injected into mice. This treatment significantly induced the synthesis of apoptosis (caspase-3/8) and necroptosis-associated proteins [receptor-interacting protein 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein]; moreover, it increased the numbers of apoptotic and necroptotic cells in hepatocytes and liver tissues and increased the levels of biochemical liver injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase). Our study is the first comprehensive analysis of the hepatocyte-derived heat-stroked EV proteome confirming the induction of liver injury by Evs. We provide a novel explanation for the pathological mechanism underlying HS-induced liver injury.


Long Noncoding RNA (lncRNA) CTTN-IT1 Elevates Skeletal Muscle Satellite Cell Proliferation and Differentiation by Acting as ceRNA for YAP1 Through Absorbing miR-29a in Hu Sheep.

  • Tianyi Wu‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Characterizing the factors that regulate the growth and development of muscle is central to animal production. Skeletal muscle satellite cells (SMSCs) provide an important material for simulating the proliferation and differentiation of muscle cells. YAP1, which can promote muscle growth, is closely related to the proliferation of SMSCs in Hu sheep (Ovis aries). In addition, some miRNAs, such as miR-541-3p, miR-142-5p, and miR-29a, can play critical roles in muscle growth by specifically binding with their target mRNAs. Meanwhile, lncRNA can competitively bind these miRNAs and reduce the regulatory effect of miRNAs on their target genes and thus play critical roles themselves in muscle growth. However, the regulatory molecular mechanism of miRNA and lncRNA on SMSC proliferation through YAP1 remains unclear. Here, we characterized the regulatory network among YAP1 and its targeted miRNAs and lncRNAs in Hu sheep SMSCs. The potential ncRNAs that regulate YAP1 (miR-29a and CTTN-IT1) were predicted through multilevel bioinformatics analysis. Dual-luciferase assays, RT-qPCR, and western blots revealed that miR-29a can significantly reduce the mRNA and protein expression level by binding to a specific 3'-UTR of YAP1 (P < 0.05), while CTTN-IT1 can restore the expression of YAP1 through competitive binding to miR-29a. Furthermore, the mRNA and protein expression levels of MyoG, MyoD, and MyHC showed that miR-29a can inhibit the expression of genes related to the differentiation of SMSCs, and CTTN-IT1 can increase the expression of these same genes. Thus, miR-29a may inhibit the differentiation of SMSCs and CTTN-IT1 can restore this inhibition. The EdU staining assay indicated that excessive miR-29a can significantly reduce the proliferation ability of SMSCs (P < 0.05), while overexpression of CTTN-IT1 can significantly increase the proliferation of SMSCs (P < 0.01). CTTN-IT1 is a novel lncRNA that is a competing endogenous RNA (ceRNA) of miR-29a and can promote SMSC proliferation and differentiation by restoring the expression of YAP1 when it is inhibited by miR-29a in Hu sheep. Overall, our findings construct a CTTN-IT1-miR-29a-YAP1 regulatory network that will help contribute new insight into improving the muscle development of Hu sheep.


GGCT promotes colorectal cancer migration and invasion via epithelial-mesenchymal transition.

  • Qi Huang‎ et al.
  • Oncology letters‎
  • 2020‎

Colorectal cancer (CRC) is one of the most common malignancies, and the fourth most common cause of cancer-associated mortality globally. The epithelial to mesenchymal transition (EMT) serves an important function in metastatic dissemination and determines the aggressiveness of CRC. However, the regulatory mechanism of EMT in CRC has not yet been elucidated. γ-glutamylcyclotransferase (GGCT) is an important enzyme in glutathione metabolism and highly expressed in numerous forms of cancer, making it a promising therapeutic target. In the present study, GGCT was demonstrated to be highly expressed in CRC tissues, and patients with CRC with a higher expression of GGCT exhibited a worse prognosis compared with patients exhibiting a lower expression of GGCT. This result suggests that GGCT may serve as a novel prognostic marker for CRC. Furthermore, GGCT was indicated to promote CRC cell migration and invasion through regulating EMT-associated genes, including N-cadherin, Vimentin, snail family transcriptional repressor 2 and snail family transcriptional repressor 1. In conclusion, the present study provides novel insights into the mechanism governing CRC migration and invasion, and identified GGCT as a promising therapeutic target that may be used in the treatment of CRC.


Cas12a-Activated Universal Field-Deployable Detectors for Bacterial Diagnostics.

  • Yun Sun‎ et al.
  • ACS omega‎
  • 2020‎

Field-deployable detectors of disease biomarkers provide a simple and fast analysis of clinical specimens. However, most of the existing field-deployable diagnostics have poor sensitivity and are not suitable for the detection of biomarkers with low abundance. Herein, we report a highly sensitive and rapid colorimetric readout paper-based assay for pathogen detection by integrating the unique collateral activity of a Cas12a-activated universal field-deployable detector (CUFD). The collateral effect of Cas12a results in a nonspecific destruction of a fluorophore biotin-labeled ssDNA reporter for the CUFD. This technique can quantify seven different kinds of pathogens in blood samples without any purification procedure, with sensitivity as low as 10 aM for the Shigella dysenteriae DNA. This CUFD technique has significant potential for the detection of pathogenic DNA as well as other types of DNA or RNA targets at the point-of-care application.


L-Theanine Reduced the Development of Knee Osteoarthritis in Rats via Its Anti-Inflammation and Anti-Matrix Degradation Actions: In Vivo and In Vitro Study.

  • Hui Bai‎ et al.
  • Nutrients‎
  • 2020‎

The etiology of osteoarthritis (OA) is multifactorial, with no effective disease-modifying-drugs. L-theanine has been reported to inhibit inflammatory responses in some diseases and this study aimed to investigate the effect of L-theanine on Interleukin-1(IL-1)β-stimulated chondrocytes, and in an injury-induced OA rat model. Primary chondrocytes were stimulated by IL-1β (10 ng/mL) for 24 h and then co-cultured with L-theanine for 24 h. The effects of L-theanine on IL-1β-stimulated expression of pro-inflammatory cytokines and hydrolytic enzyme were analyzed using Western blotting, quantitative polymerase chain reaction (q-PCR) and enzyme-linked immunosorbent assay (ELISA) kits. An immunofluorescence assay was used to detect nuclear factor kappa B (NF-κB) phosphorylation. OA was induced by anterior cruciate ligament transection (ACLT) surgery in rats and celecoxib was used as a positive control. OA severity was measured using the Osteoarthritis Research Society International (OARSI) grading system to describe histological changes. The results showed that L-theanine decreased the expression of pro-inflammatory mediators, including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), both in vivo and in vitro. L-theanine treatment inhibited IL-1β-induced upregulation of matrix metalloproteinases (MMP)-3 and MMP-13, as well as inhibited NF-κB p65 activation. In vivo animal model showed that L-theanine administration (200 mg/kg) significantly alleviated OA lesions and decreased OARSI score. Our data indicated that L-theanine decreased inflammatory cytokines and protected extracellular matrix degradation through inhibition of the NF-κB pathway, and L-theanine may be considered a promising therapeutic strategy in OA prevention.


Population divergence and gene flow in two East Asian shorebirds on the verge of speciation.

  • Keren R Sadanandan‎ et al.
  • Scientific reports‎
  • 2019‎

Genetic isolation of populations over evolutionary time leads to the formation of independent species. We examined a pair of shorebirds - the Kentish Plover Charadrius alexandrinus and the enigmatic White-faced Plover C. dealbatus - which display strong plumage differentiation, yet show minimal genetic divergence based on previous mitochondrial and microsatellite work. Two scenarios may lead to this situation: (1) they represent clinal or poorly diverged populations with limited genomic differentiation despite substantial plumage variation, or (2) they are diverging taxa at the cusp of speciation, with ongoing limited gene flow obliterating signals of differentiation in traditional genetic markers. We compared the genotypes of 98 plovers (59 Kentish Plovers, 35 White-faced Plovers and 4 genomic hybrids) sampled in eastern Asia and Europe using ddRADSeq to harvest over 8000 genome-wide SNPs. In contrast to previous studies, our analyses revealed two well defined genomic clusters, with limited hybridization and a narrow contact zone. We also uncovered significant differences in bill length and further sex-specific differences in size, which may signal differences in mate choice between Kentish and White-faced Plovers. Our results support the hypothesis that this shorebird duo is on the verge of speciation.


Long noncoding RNA TP53TG1 promotes pancreatic ductal adenocarcinoma development by acting as a molecular sponge of microRNA-96.

  • Yufeng Zhang‎ et al.
  • Cancer science‎
  • 2019‎

Long noncoding RNAs (lncRNAs) are emerging as key regulators in cancer initiation and progression. TP53TG1 is a recently identified lncRNA and several studies have shown that TP53TG1 may play the role of tumor suppressor gene or oncogene in different tumors. Nevertheless, the involvement of TP53TG1 in carcinogenesis of pancreatic ductal adenocarcinoma (PDAC) has not been characterized. In our studies, we identified that TP53TG1 was highly expressed in PDAC and was a novel regulator of PDAC development. Knockdown of TP53TG1 inhibited proliferation, induced apoptosis, and decreased migration and invasion in PDAC cells, whereas enhanced expression of TP53TG1 had the opposite effects. Mechanistically, TP53TG1 could directly bind to microRNA (miR)-96 and effectively function as a sponge for miR-96, thus antagonizing the functions of miR-96 and leading to derepression of its endogenous target KRAS, which is a core oncogene in the initiation and maintenance of PDAC. Taken together, these observations imply that TP53TG1 contributes to the growth and progression of PDAC by acting as a competing endogenous RNA (ceRNA) to competitively bind to miR-96 and regulate KRAS expression, which highlights the importance of the complicated miRNA-lncRNA network in modulating the progression of PDAC.


Sublethal heat treatment of hepatocellular carcinoma promotes intrahepatic metastasis and stemness in a VEGFR1-dependent manner.

  • Li Tan‎ et al.
  • Cancer letters‎
  • 2019‎

Incomplete radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC) could initiate malignant transition. Patient-derived xenograft (PDX) mice model was established to investigate the effect of VEGF pathway in incomplete RFA of HCC with high fidelity. Cancer stem cell markers and metastatic markers were increased after incomplete RFA, with increased VEGFR1 and decreased VEGFR2 expression. In vitro experiments revealed sublethal heat treatment promoted migration ability of HepG2, HCCLM3, and SMMC7721 cells, which coincided with enhanced ability of sphere formation and up-regulation of VEGFR1, CD133, CD44, and EpCAM. Moreover, HCC cells secreted more VEGF after heat-treatment. VEGF promoted migration and enhanced stemness of HCC cells, which could not be suppressed by VEGFR2 inhibitor. PIGF, the ligand of VEGFR1, significantly increased migration and stemness of HCC cells. Blocking VEGFR1 reduced heat-induced enhancement of migration and stemness, whereas inhibition of VEGFR2 could not. In conclusion, VEGFR1 plays a critical role in sublethal heat treatment-induced enhancement of migration and stemness in HCC, suggesting that VEGFR1 may serve as a potential and promising therapeutic target for preventing recurrence after RFA.


The novel methyltransferase SETD4 regulates TLR agonist-induced expression of cytokines through methylation of lysine 4 at histone 3 in macrophages.

  • Yuyun Zhong‎ et al.
  • Molecular immunology‎
  • 2019‎

The production of inflammatory cytokines is closely related to pathogen-associated molecular pattern (PAMP)-triggered activation of the Toll-like receptor (TLR), intracellular signal transduction pathways such as MAPK and NF-κB, and histone modifications. Histone methylation, a type of histone modifications, is mainly accomplished by a class of SET family proteins containing highly conserved SET domains. In the present study, we found that SET domain-containing protein 4 (SETD4) regulated inflammatory cytokines in response to TLR agonists. LPS stimulation led to the enhanced SETD4 expression, while the increased IL-6 and TNF-α release from LPS-stimulated RAW264.7 cells was attenuated by depletion of SETD4 using RNA interference. The results were further confirmed in BMDMs and pMφ isolated from SETD4-deficient mice where SETD4-/- macrophages treated with LPS, BLP or Poly(I:C) showed down-regulated IL-6 and TNF-α mRNA and protein levels when compared with SETD4+/+ macrophages. Moreover, the mRNA levels of all NF-κB-dependent genes including IL-1β, IL-10, NFKBA, DUSP1, CCL2, CCL5, and CXCL10 in SETD4-/- macrophages were substantially reduced. To further clarify the regulatory mechanism(s) by which SETD4 modulates inflammatory cytokines, we examined the effect of SETD4 on the activation of MAPK and NF-κB signalling pathways, and found that knockout of SETD4 had no effect on phosphorylation of p38, ERK, JNK, p65, and IκBα. Notably, SETD4 translocated quickly from the cytosol to the nucleus upon LPS stimulation, suggesting that SETD4 may exert its regulatory function downstream of the MAPK and NF-κB pathways. To characterize this, we performed an in vitro HMTase assay to measure histone methyltransferase (HMTase) activity of SETD4. H3K4me1 and H3K4me2 levels were enhanced dramatically with the supplementation of SETD4, whereas both H3K4me1 and H3K4me2 were strongly attenuated in SETD4-/- BMDMs. Moreover, the LPS-stimulated recruitment of H3K4me1 and H3K4me2 at both TNF-α and IL-6 promoters was severely impaired in SETD4-/- BMDMs. Collectively, these results demonstrate that SETD4 positively regulates IL-6 and TNF-α expression in TLR agonist-stimulated macrophages by directly activating H3K4 methylation.


Physical and data structure of 3D genome.

  • Kai Huang‎ et al.
  • Science advances‎
  • 2020‎

With the textbook view of chromatin folding based on the 30-nm fiber being challenged, it has been proposed that interphase DNA has an irregular 10-nm nucleosome polymer structure whose folding philosophy is unknown. Nevertheless, experimental advances suggest that this irregular packing is associated with many nontrivial physical properties that are puzzling from a polymer physics point of view. Here, we show that the reconciliation of these exotic properties necessitates modularizing three-dimensional genome into tree data structures on top of, and in striking contrast to, the linear topology of DNA double helix. These functional modules need to be connected and isolated by an open backbone that results in porous and heterogeneous packing in a quasi-self-similar manner, as revealed by our electron and optical imaging. Our multiscale theoretical and experimental results suggest the existence of higher-order universal folding principles for a disordered chromatin fiber to avoid entanglement and fulfill its biological functions.


Development of synthetic high-density lipoprotein-based ApoA-I mimetic peptide-loaded docetaxel as a drug delivery nanocarrier for breast cancer chemotherapy.

  • Miaomiao Gong‎ et al.
  • Drug delivery‎
  • 2019‎

In this study, a synthetic high-density lipoprotein (sHDL), peptide-based nanocarrier loaded with docetaxel (DTX) was constructed, against breast cancer. The thermodynamic and molecular dynamic analyses were conducted to examine the stability of nanoparticles synthesized from mimetic peptide 5 A and various types of phospholipids. Furthermore, the cellular uptake and in vivo fluorescence imaging analysis experiments, with scavenger receptor B-I (SR-BI) were carried out to examine the tumor-targeting ability of sHDL. The nanoparticles were investigated for their pharmacodynamic and cytotoxic effects to show their effectivity as anti-tumor agents. The results showed that the synthesized sHDL nanoparticles exhibited a high payload of DTX, sustained drug release properties, and excellent biocompatibility. Moreover, DTX-sHDL nanoparticles enhanced the uptake of DTX, increased the cytotoxicity against MCF-7 cells, and reduced the off-target side-effects to normal cells. Finally, experiments in 4T1 cell line-bearing mice indicate that inhibition of tumor growth by DTX-sHDL nanoparticles was superior to that of free DTX group. Thus, the sHDL nanoparticles are a promising drug delivery vehicle for improving the efficacy of anti-cancer drugs.


A gene-based risk score model for predicting recurrence-free survival in patients with hepatocellular carcinoma.

  • Wenhua Wang‎ et al.
  • BMC cancer‎
  • 2021‎

Hepatocellular carcinoma (HCC) remains the most frequent liver cancer, accounting for approximately 90% of primary liver cancers worldwide. The recurrence-free survival (RFS) of HCC patients is a critical factor in devising a personal treatment plan. Thus, it is necessary to accurately forecast the prognosis of HCC patients in clinical practice.


Evaluation of Winter Footwear: Comparison of Test Methods to Determine Footwear Slip Resistance on Ice Surfaces.

  • Atena Roshan Fekr‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

The use of slip-resistant winter footwear is crucial for the prevention of slips and falls on ice and snow. The main objective of this paper is to evaluate a mechanical testing method to determine footwear slip resistance on wet and dry ice surfaces and to compare it with the human-centred test method introduced by researchers at KITE (Knowledge, Innovation, Talent, Everywhere)-Toronto Rehabilitation Institute-University Health Network. Phase 1 of this study assessed the repeatability and reproducibility of the mechanical method by evaluating ten different occupational winter boots using two SATRA Slip resistance testers (STM 603, SATRA Technology Centre, Kettering, UK). One tester is located in Toronto and one in Montreal. These boots were chosen based on the needs of the IRSST (Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail, Montréal, Quebec, Canada), who were primarily interested in providing safe winter footwear for police, firefighters and municipal workers. In Phase 2, the results of the human-centred test approach were compared with the mechanical results. In Phase 3, two of these boots with conflicting results from the previous phases were tested using a second human-centred method. In Phase 1, the mechanical testing results obtained in the two labs showed a high linear correlation (>0.94) and good agreement on both ice surfaces; however, they revealed a bias (~0.06) between the two labs on the dry ice condition. The mechanical and human-centred tests (phase 2) were found to be better correlated in the wet ice condition (R = 0.95) compared to the dry ice condition (R = 0.34). Finally, the rating of the footwear slip resistance based on the number of slips counted in phase 3 was consistent with the rating by the human-centred test method (phase 2), but not the mechanical method (phase 1). The findings of this study provide a better understanding of the limitations of the SATRA ice tray for measuring footwear slip resistance and demonstrate that the mechanical method must be further refined to make it more comparable to the human-centred methods to achieve better agreement with real-world performance.


PTBP1 is necessary for dendritic cells to regulate T-cell homeostasis and antitumour immunity.

  • Guangfeng Geng‎ et al.
  • Immunology‎
  • 2021‎

Dendritic cells (DCs) play an important role in linking innate and adaptive immunity. DCs can sense endogenous and exogenous antigens and present those antigens to T cells to induce an immune response or immune tolerance. During activation, alternative splicing (AS) in DCs is dramatically changed to induce cytokine secretion and upregulation of surface marker expression. PTBP1, an RNA-binding protein, is essential in alternative splicing, but the function of PTBP1 in DCs is unknown. Here, we found that a specific deficiency of Ptbp1 in DCs could increase MHC II expression and perturb T-cell homeostasis without affecting DC development. Functionally, Ptbp1 deletion in DCs could enhance antitumour immunity and asthma exacerbation. Mechanistically, we found that Pkm alternative splicing and a subset of Ifn response genes could be regulated by PTBP1. These findings revealed the function of PTBP1 in DCs and indicated that PTBP1 might be a novel therapeutic target for antitumour treatment.


Emodin protects knee joint cartilage in rats through anti-matrix degradation pathway: An in vitro and in vivo study.

  • Hailong Hu‎ et al.
  • Life sciences‎
  • 2021‎

Osteoarthritis (OA) is a common joint disease and the main cause of disability. We sought to determine the effective concentration of emodin on chondrocytes and to identify the dosage of emodin that induces a comparable therapeutic effect with the COX-2 inhibitor drug, celecoxib that is currently used to treat OA.


A Vacuolar Invertase CsVI2 Regulates Sucrose Metabolism and Increases Drought Tolerance in Cucumis sativus L.

  • Lin Chen‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Vacuolar invertase (VI) can irreversibly degrade sucrose into glucose and fructose and involve in plants abiotic-stress-tolerance. Cucumber (Cucumis sativus L.) is susceptible to drought stress, especially during the seedling stage. To date, the involvement of VI in drought tolerance in cucumber seedlings is in urgent need of exploration. In the present study, a cucumber vacuolar invertase gene, CsVI2, was isolated and functionally characterized. The results showed that (1) CsVI2 showed vacuolar invertase activity both in vivo and in vitro; (2) the transcript level of CsVI2, along with VI activity, was significantly induced by drought stress. Moreover, the expression of sucrose synthase 3 (CsSUS3) was increased and that of sucrose phosphate synthase 1 (CsSPS1) was decreased after exposure to drought stress, which was followed by an increase in sucrose synthase activity and a decrease in sucrose phosphate synthase activity; (3) CsVI2-overexpressing transformed cucumber seedlings showed enhanced vacuolar invertase activity and drought tolerance and 4) protein-protein interaction modelling indicated that a cucumber invertase inhibitor, CsINVINH3, can interact with CsVI2. In summary, the results indicate that CsVI2 as an invertase can regulate sucrose metabolism and enhance drought stress in cucumber seedlings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: