Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 171 papers

saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern.

  • Mai Komori‎ et al.
  • Nature communications‎
  • 2023‎

Several vaccines have been widely used to counteract the global pandemic caused by SARS-CoV-2. However, due to the rapid emergence of SARS-CoV-2 variants of concern (VOCs), further development of vaccines that confer broad and longer-lasting protection against emerging VOCs are needed. Here, we report the immunological characteristics of a self-amplifying RNA (saRNA) vaccine expressing the SARS-CoV-2 Spike (S) receptor binding domain (RBD), which is membrane-anchored by fusing with an N-terminal signal sequence and a C-terminal transmembrane domain (RBD-TM). Immunization with saRNA RBD-TM delivered in lipid nanoparticles (LNP) efficiently induces T-cell and B-cell responses in non-human primates (NHPs). In addition, immunized hamsters and NHPs are protected against SARS-CoV-2 challenge. Importantly, RBD-specific antibodies against VOCs are maintained for at least 12 months in NHPs. These findings suggest that this saRNA platform expressing RBD-TM will be a useful vaccine candidate inducing durable immunity against emerging SARS-CoV-2 strains.


High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis.

  • Hiroki Ikeda‎ et al.
  • Life science alliance‎
  • 2023‎

High-quality, straightforward single-cell RNA sequencing (RNA-seq) with spatial resolution remains challenging. Here, we developed DRaqL (direct RNA recovery and quenching for laser capture microdissection), an experimental approach for efficient cell lysis of tissue sections, directly applicable to cDNA amplification. Single-cell RNA-seq combined with DRaqL allowed transcriptomic profiling from alcohol-fixed sections with efficiency comparable with that of profiling from freshly dissociated cells, together with effective exon-exon junction profiling. The combination of DRaqL with protease treatment enabled robust and efficient single-cell transcriptome analysis from formalin-fixed tissue sections. Applying this method to mouse ovarian sections, we were able to predict the transcriptome of oocytes by their size and identified an anomaly in the size-transcriptome relationship relevant to growth retardation of oocytes, in addition to detecting oocyte-specific splice isoforms. Furthermore, we identified differentially expressed genes in granulosa cells in association with their proximity to the oocytes, suggesting distinct epigenetic regulations and cell-cycle activities governing the germ-soma relationship. Thus, DRaqL is a versatile, efficient approach for high-quality single-cell RNA-seq from tissue sections, thereby revealing histological heterogeneity in folliculogenic transcriptome.


A disease-specific iPS cell resource for studying rare and intractable diseases.

  • Megumu K Saito‎ et al.
  • Inflammation and regeneration‎
  • 2023‎

Disease-specific induced pluripotent stem cells (iPSCs) are useful tools for pathological analysis and diagnosis of rare diseases. Given the limited available resources, banking such disease-derived iPSCs and promoting their widespread use would be a promising approach for untangling the mysteries of rare diseases. Herein, we comprehensively established iPSCs from patients with designated intractable diseases in Japan and evaluated their properties to enrich rare disease iPSC resources.


Hypoblast from human pluripotent stem cells regulates epiblast development.

  • Takumi Okubo‎ et al.
  • Nature‎
  • 2024‎

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


KLF4 N-terminal variance modulates induced reprogramming to pluripotency.

  • Shin-Il Kim‎ et al.
  • Stem cell reports‎
  • 2015‎

As the quintessential reprogramming model, OCT3/4, SOX2, KLF4, and c-MYC re-wire somatic cells to achieve induced pluripotency. Yet, subtle differences in methodology confound comparative studies of reprogramming mechanisms. Employing transposons, we systematically assessed cellular and molecular hallmarks of mouse somatic cell reprogramming by various polycistronic cassettes. Reprogramming responses varied in the extent of initiation and stabilization of transgene-independent pluripotency. Notably, the cassettes employed one of two KLF4 variants, differing only by nine N-terminal amino acids, which generated dissimilar protein stoichiometry. Extending the shorter variant by nine N-terminal amino acids or augmenting stoichiometry by KLF4 supplementation rescued both protein levels and phenotypic disparities, implicating a threshold in determining reprogramming outcomes. Strikingly, global gene expression patterns elicited by published polycistronic cassettes diverged according to each KLF4 variant. Our data expose a Klf4 reference cDNA variation that alters polycistronic factor stoichiometry, predicts reprogramming hallmarks, and guides comparison of compatible public data sets.


Suppression of osteosarcoma cell invasion by chemotherapy is mediated by urokinase plasminogen activator activity via up-regulation of EGR1.

  • Yukihiro Matsunoshita‎ et al.
  • PloS one‎
  • 2011‎

The cellular and molecular mechanisms of tumour response following chemotherapy are largely unknown. We found that low dose anti-tumour agents up-regulate early growth response 1 (EGR1) expression. EGR1 is a member of the immediate-early gene group of transcription factors which modulate transcription of multiple genes involved in cell proliferation, differentiation, and development. It has been reported that EGR1 act as either tumour promoting factor or suppressor. We therefore examined the expression and function of EGR1 in osteosarcoma.


Integration-free iPS cells engineered using human artificial chromosome vectors.

  • Masaharu Hiratsuka‎ et al.
  • PloS one‎
  • 2011‎

Human artificial chromosomes (HACs) have unique characteristics as gene-delivery vectors, including episomal transmission and transfer of multiple, large transgenes. Here, we demonstrate the advantages of HAC vectors for reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. Two HAC vectors (iHAC1 and iHAC2) were constructed. Both carried four reprogramming factors, and iHAC2 also encoded a p53-knockdown cassette. iHAC1 partially reprogrammed MEFs, and iHAC2 efficiently reprogrammed MEFs. Global gene expression patterns showed that the iHACs, unlike other vectors, generated relatively uniform iPS cells. Under non-selecting conditions, we established iHAC-free iPS cells by isolating cells that spontaneously lost iHAC2. Analyses of pluripotent markers, teratomas and chimeras confirmed that these iHAC-free iPS cells were pluripotent. Moreover, iHAC-free iPS cells with a re-introduced HAC encoding Herpes Simplex virus thymidine kinase were eliminated by ganciclovir treatment, indicating that the HAC safeguard system functioned in iPS cells. Thus, the HAC vector could generate uniform, integration-free iPS cells with a built-in safeguard system.


Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture.

  • Anna L Lahti‎ et al.
  • Disease models & mechanisms‎
  • 2012‎

Long QT syndrome (LQTS) is caused by functional alterations in cardiac ion channels and is associated with prolonged cardiac repolarization time and increased risk of ventricular arrhythmias. Inherited type 2 LQTS (LQT2) and drug-induced LQTS both result from altered function of the hERG channel. We investigated whether the electrophysiological characteristics of LQT2 can be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology. Spontaneously beating cardiomyocytes were differentiated from two iPSC lines derived from an individual with LQT2 carrying the R176W mutation in the KCNH2 (HERG) gene. The individual had been asymptomatic except for occasional palpitations, but his sister and father had died suddenly at an early age. Electrophysiological properties of LQT2-specific cardiomyocytes were studied using microelectrode array and patch-clamp, and were compared with those of cardiomyocytes derived from control cells. The action potential duration of LQT2-specific cardiomyocytes was significantly longer than that of control cardiomyocytes, and the rapid delayed potassium channel (I(Kr)) density of the LQT2 cardiomyocytes was significantly reduced. Additionally, LQT2-derived cardiac cells were more sensitive than controls to potentially arrhythmogenic drugs, including sotalol, and demonstrated arrhythmogenic electrical activity. Consistent with clinical observations, the LQT2 cardiomyocytes demonstrated a more pronounced inverse correlation between the beating rate and repolarization time compared with control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation carrier and arrhythmias can be triggered by a commonly used drug. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as an important platform to study pathophysiological mechanisms and drug sensitivity in LQT2.


Revolving movement of a dynamic cluster of actin filaments during mitosis.

  • Masaru Mitsushima‎ et al.
  • The Journal of cell biology‎
  • 2010‎

The actin cytoskeleton undergoes rapid changes in its architecture during mitosis. Here, we demonstrate novel actin assembly dynamics in M phase. An amorphous cluster of actin filaments appears during prometaphase, revolves horizontally along the cell cortex at a constant angular speed, and fuses into the contractile ring after three to four revolutions. Cdk1 activity is required for the formation of this mitotic actin cluster and its revolving movement. Rapid turnover of actin in the filaments takes place everywhere in the cluster and is also required for its cluster rotation during mitosis. Knockdown of Arp3, a component of the actin filament-nucleating Arp2/3 complex, inhibits the formation of the mitotic actin cluster without affecting other actin structures. These results identify Arp2/3 complex as a key factor in the generation of the dynamic actin cluster during mitosis.


Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer's disease.

  • Naoki Yahata‎ et al.
  • PloS one‎
  • 2011‎

Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease.


Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods.

  • Toshikazu Araoka‎ et al.
  • PloS one‎
  • 2014‎

The first step in developing regenerative medicine approaches to treat renal diseases using pluripotent stem cells must be the generation of intermediate mesoderm (IM), an embryonic germ layer that gives rise to kidneys. In order to achieve this goal, establishing an efficient, stable and low-cost method for differentiating IM cells using small molecules is required. In this study, we identified two retinoids, AM580 and TTNPB, as potent IM inducers by high-throughput chemical screening, and established rapid (five days) and efficient (80% induction rate) IM differentiation from human iPSCs using only two small molecules: a Wnt pathway activator, CHIR99021, combined with either AM580 or TTNPB. The resulting human IM cells showed the ability to differentiate into multiple cell types that constitute adult kidneys, and to form renal tubule-like structures. These small molecule differentiation methods can bypass the mesendoderm step, directly inducing IM cells by activating Wnt, retinoic acid (RA), and bone morphogenetic protein (BMP) pathways. Such methods are powerful tools for studying kidney development and may potentially provide cell sources to generate renal lineage cells for regenerative therapy.


Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection.

  • Kristin L Boswell‎ et al.
  • PLoS pathogens‎
  • 2014‎

The interaction between follicular T helper cells (TFH) and B cells in the lymph nodes and spleen has a major impact on the development of antigen-specific B cell responses during infection or vaccination. Recent studies described a functional equivalent of these cells among circulating CD4 T cells, referred to as peripheral TFH cells. Here, we characterize the phenotype and in vitro B cell helper activity of peripheral TFH populations, as well as the effect of HIV infection on these populations. In co-culture experiments we confirmed CXCR5+ cells from HIV-uninfected donors provide help to B cells and more specifically, we identified a CCR7(high)CXCR5(high)CCR6(high)PD-1(high) CD4 T cell population that secretes IL-21 and enhances isotype-switched immunoglobulin production. This population is significantly decreased in treatment-naïve, HIV-infected individuals and can be recovered after anti-retroviral therapy. We found impaired immunoglobulin production in co-cultures from HIV-infected individuals and found no correlation between the frequency of peripheral TFH cells and memory B cells, or with neutralization activity in untreated HIV infection in our cohort. Furthermore, we found that within the peripheral TFH population, the expression level of TFH-associated genes more closely resembles a memory, non-TFH population, as opposed to a TFH population. Overall, our data identify a heterogeneous population of circulating CD4 T cells that provides in vitro help to B cells, and challenges the origin of these cells as memory TFH cells.


Generation and characterization of induced pluripotent stem cells from Aid-deficient mice.

  • Ren Shimamoto‎ et al.
  • PloS one‎
  • 2014‎

It has been shown that DNA demethylation plays a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism of this action is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid, also known as Aicda) is involved in DNA demethylation in several developmental processes, as well as cell fusion-mediated reprogramming. Based on these reports, we hypothesized that Aid may be involved in the DNA demethylation that occurs during the generation of iPS cells. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid⁻/⁻) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By introducing Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP-positive iPS cells could be generated from the fibroblasts and primary B cells of Aid⁻/⁻ mice. Their induction efficiency was similar to that of wild-type (Aid⁺/⁺) iPS cells. The Aid⁻/⁻ iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. A comprehensive DNA methylation analysis showed only a few differences between Aid⁺/⁺ and Aid⁻/⁻ iPS cells. These data suggest that Aid does not have crucial functions in DNA demethylation during iPS cell generation.


Secreted Ephrin Receptor A7 Promotes Somatic Cell Reprogramming by Inducing ERK Activity Reduction.

  • Joonseong Lee‎ et al.
  • Stem cell reports‎
  • 2015‎

The role of secreted molecules in cellular reprogramming has been poorly understood. Here we identify a truncated form of ephrin receptor A7 (EPHA7) as a key regulator of reprogramming. Truncated EPHA7 is prominently upregulated and secreted during reprogramming. EPHA7 expression is directly regulated by OCT3/4. EphA7 knockdown results in marked reduction of reprogramming efficiency, and the addition of truncated EPHA7 is able to restore it. ERK activity is markedly reduced during reprogramming, and the secreted, truncated EPHA7 is responsible for ERK activity reduction. Remarkably, treatment of EphA7-knockdown MEFs with the ERK pathway inhibitor restores reprogramming efficiency. Analyses show that truncated EPHA7-induced ERK activity reduction plays an important role in the middle phase of reprogramming. Thus, our findings uncover the importance of secreted EPHA7-induced ERK activity reduction in reprogramming.


Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes.

  • Shunsuke Funakoshi‎ et al.
  • Scientific reports‎
  • 2016‎

Human pluripotent stem cell-derived cardiomyocytes (CMs) are a promising tool for cardiac cell therapy. Although transplantation of induced pluripotent stem cell (iPSC)-derived CMs have been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells. To optimize graft cells for cardiac reconstruction, we compared the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day 4 mesodermal cells, and day 8, day 20, and day 30 purified iPSC-CMs after initial differentiation by tracing the engraftment ratio (ER) using in vivo bioluminescence imaging. This analysis revealed the ER of day 20 CMs was significantly higher compared to other cells. Transplantation of day 20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal and ratio of Ki67-positive CMs at 3 months post injection indicated engrafted CMs proliferated in the host heart. Although this graft growth reached a plateau at 3 months, histological analysis confirmed progressive maturation from 3 to 6 months. These results suggested that day 20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts. They also demonstrate this model can be used to track the fate of transplanted cells over a long time.


Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin.

  • Akira Nasu‎ et al.
  • PloS one‎
  • 2013‎

For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original cell lineages, while others did not. Therefore, the type of cell which is most appropriate as a source for iPSCs needs to be clarified.


Fluorescent Reporter Signals, EGFP, and DsRed, Encoded in HIV-1 Facilitate the Detection of Productively Infected Cells and Cell-Associated Viral Replication Levels.

  • Kazutaka Terahara‎ et al.
  • Frontiers in microbiology‎
  • 2011‎

Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1) strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein, or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4(+) T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4(+) T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.


Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

  • Kazutoshi Takahashi‎ et al.
  • Cell‎
  • 2006‎

Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about factors that induce this reprogramming. Here, we demonstrate induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions. Unexpectedly, Nanog was dispensable. These cells, which we designated iPS (induced pluripotent stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent stem cells can be directly generated from fibroblast cultures by the addition of only a few defined factors.


A single amino acid substitution in the S1 and S2 Spike protein domains determines the neutralization escape phenotype of SARS-CoV.

  • Yu-ya Mitsuki‎ et al.
  • Microbes and infection‎
  • 2008‎

In response to SARS-CoV infection, neutralizing antibodies are generated against the Spike (S) protein. Determination of the active regions that allow viral escape from neutralization would enable the use of these antibodies for future passive immunotherapy. We immunized mice with UV-inactivated SARS-CoV to generate three anti-S monoclonal antibodies, and established several neutralization escape mutants with S protein. We identified several amino acid substitutions, including Y442F and V601G in the S1 domain and D757N and A834V in the S2 region. In the presence of each neutralizing antibody, double mutants with substitutions in both domains exhibited a greater growth advantage than those with only one substitution. Importantly, combining two monoclonal antibodies that target different epitopes effected almost complete suppression of wild type virus replication. Thus, for effective passive immunotherapy, it is important to use neutralizing antibodies that recognize both the S1 and S2 regions.


The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion.

  • Kotaro Sasaki‎ et al.
  • Developmental cell‎
  • 2016‎

The germ cell lineage ensures reproduction and heredity. The mechanism for germ cell specification in primates, including humans, has remained unknown. In primates, upon implantation the pluripotent epiblast segregates the amnion, an extra-embryonic membrane eventually ensheathing an embryo, and thereafter initiates gastrulation to generate three germ layers. Here, we show that in cynomolgus monkeys, the SOX17/TFAP2C/BLIMP1-positive primordial germ cells (cyPGCs) originate from the dorsal amnion at embryonic day 11 (E11) prior to gastrulation. cyPGCs appear to migrate down the amnion and, through proliferation and recruitment from the posterior amnion, expand in number around the posterior yolk sac by E17. Remarkably, the amnion itself expresses BMP4 and WNT3A, cytokines potentially critical for cyPGC specification, and responds primarily to them. Moreover, human PGC-like cells in vitro exhibit a transcriptome similar to cyPGCs just after specification. Our study identifies the origin of PGCs and a unique function of the nascent amnion in primates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: