Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 373 papers

A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.

  • Maojun Wang‎ et al.
  • PloS one‎
  • 2013‎

Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.


Genome-wide survey of Gγ subunit gene family in eight Rosaceae and expression analysis of PbrGGs in pear (Pyrus bretschneideri).

  • Guodong Chen‎ et al.
  • BMC plant biology‎
  • 2021‎

Heterotrimeric G-proteins, composed of Gα, Gβ and Gγ subunits, are important signal transmitters, mediating the cellular response to multiple stimuli in animals and plants. The Gγ subunit is an essential component of the G-protein, providing appropriate functional specificity to the heterotrimer complex and has been well studied in many species. However, the evolutionary history, expression pattern and functional characteristics of Gγ subunits has not been explored in the Rosaceae, representing many important fruit crops.


Isolation and Transcriptome Analysis of Phenol-Degrading Bacterium From Carbon-Sand Filters in a Full-Scale Drinking Water Treatment Plant.

  • Qihui Gu‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Phenol is a typical organic contaminant in the environment. To date, the biodegradation of phenol by microorganisms remains the preferred method for its removal and remediation, but data on phenol removal by drinking water biofilters are lacking. In this study, we used high-throughput sequencing to investigate the microbial community structure in a carbon-sand biofilter. The results indicated that the predominant bacterial group was Bacilli, followed by Gammaproteobacteria, Clostridia, and Alphaproteobacteria. In addition, a strain was capable of degrading phenol at low concentrations of 500 μg/L within 100 min was isolated and identified as Rhodococcus sp. CS-1. Transcriptome analysis results showed that Rhodococcus sp. CS-1 was able to degrade phenol via both the catechol and protocatechuate branch of the β-ketoadipate pathway. Furthermore, some novel candidate biomarkers (copper oxidase, copper chaperone, and MarR/DeoR/TetR family transcriptional regulators) were successfully identified to be potentially involved in phenol biodegradation. This study indicates that carbon-sand filters have the potential for remediation of phenol. The application of native microorganisms to drinking water treatment system is an adaptive strategy in oligotrophic water environments.


Hepatic transcriptome analysis and identification of differentially expressed genes response to dietary oxidized fish oil in loach Misgurnus anguillicaudatus.

  • Yin Zhang‎ et al.
  • PloS one‎
  • 2017‎

RNA sequencing and short-read assembly were utilized to produce a transcriptome of livers from loaches (Misgurnus anguillicaudatus) fed with three different diets respectively containing fresh fish oil (FO group), medium oxidized fish oil (MO group) and high oxidized fish oil (HO group). A total of 60,663 unigenes were obtained in this study, with mean length 848.74 bp. 50,814, 49,584 and 49,814 unigenes were respectively obtained from FO, MO and HO groups. There were 2,343 differentially expressed genes between FO and MO, with 855 down- and 1,488 up-regulated genes in the MO group. 2,813 genes were differentially expressed between FO and HO, including 1,256 down- and 1,552 up-regulated genes in the HO group. 2,075 differentially expressed genes were found in the comparison of MO and HO, including 1,074 up- and 1,001 down-regulated genes in the MO group. Some differentially expressed genes, such as fatty acid transport protein (fatp), fatty acid binding protein (fabp), apolipoprotein (apo), peroxisome proliferator activated receptor-gamma (ppar-γ), acetyl-CoA synthetase (acs) and arachidonate 5-lipoxygenase (alox5), were involved in lipid metabolism, suggesting these genes in the loach were responsive to dietary oxidized fish oil. Results of transcriptome profilings here were validated using quantitative real time PCR in fourteen randomly selected unigenes. The present study provides insights into hepatic transcriptome profile of the loach, which is a valuable resource for studies of loach genomics. More importantly, this study identifies some important genes responsible for dietary oxidized fish oil, which will benefit researches of lipid metabolism in fish.


Application of weighted gene co-expression network analysis to reveal key modules and hub genes in generalized aggressive periodontitis.

  • Yang Li‎ et al.
  • Archives of oral biology‎
  • 2020‎

The aim of this study was to construct a gene co-expression network to identify key modules and genes in people with generalized aggressive periodontitis.


Integrative Analysis of NSCLC Identifies LINC01234 as an Oncogenic lncRNA that Interacts with HNRNPA2B1 and Regulates miR-106b Biogenesis.

  • Zhenyao Chen‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2020‎

The discovery of long noncoding RNAs (lncRNAs) has increased our understanding of the development and progression of many cancers, but their contributions to non-small cell lung cancer (NSCLC) remain poorly understood. Here, we profiled lncRNA expression in NSCLC and investigated in detail the molecular function of one upregulated lncRNA, LINC01234. LINC01234 was overexpressed in NSCLC compared with normal lung tissue and correlated positively with poor prognosis. Downregulation of LINC01234 impaired cell proliferation in vitro and tumor growth in vivo. RNA pull-down/mass spectrometry experiments showed that LINC01234 interacted with the RNA-binding protein heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), which, in turn, led to the recruitment of DiGeorge syndrome critical region gene 8 (DGCR8), a subunit of the microRNA (miRNA) microprocessor complex. Accordingly, depletion of either LINC01234 or HNRNPA2B1 reduced the processing of several miRNA precursors, including primary microRNA (pri-miR)-106b. miR-106b-5p enhanced NSCLC cell growth by downregulating cryptochrome 2 (CRY2), thereby increasing c-Myc expression. Finally, we found that activated c-Myc binds to the LINC01234 promoter to increase its transcription, creating a c-Myc-LINC01234-HNRNPA2B1-miR-106b-5p-CRY2-c-Myc positive-feedback loop. We identified numerous lncRNAs with dysregulated expression in NSCLC and demonstrated a novel oncogenic axis involving LINC01234, HNRNPA2B1, miR-106b-5p, CRY2, and c-Myc. Components of this axis may be potential novel targets for NSCLC.


Comparative chloroplast genome analysis of Impatiens species (Balsaminaceae) in the karst area of China: insights into genome evolution and phylogenomic implications.

  • Chao Luo‎ et al.
  • BMC genomics‎
  • 2021‎

Impatiens L. is a genus of complex taxonomy that belongs to the family Balsaminaceae (Ericales) and contains approximately 1000 species. The genus is well known for its economic, medicinal, ornamental, and horticultural value. However, knowledge about its germplasm identification, molecular phylogeny, and chloroplast genomics is limited, and taxonomic uncertainties still exist due to overlapping morphological features and insufficient genomic resources.


Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean.

  • Juge Liu‎ et al.
  • BMC genomics‎
  • 2016‎

Multidrug and toxic compound extrusion (MATE) family is an important group of the multidrug efflux transporters that extrude organic compounds, transporting a broad range of substrates such as organic acids, plant hormones and secondary metabolites. However, genome-wide analysis of MATE family in plant species is limited and no such studies have been reported in soybean.


Construction and analysis of regulatory genetic networks in cervical cancer based on involved microRNAs, target genes, transcription factors and host genes.

  • Ning Wang‎ et al.
  • Oncology letters‎
  • 2014‎

Over recent years, genes and microRNA (miRNA/miR) have been considered as key biological factors in human carcinogenesis. During cancer development, genes may act as multiple identities, including target genes of miRNA, transcription factors and host genes. The present study concentrated on the regulatory networks consisting of the biological factors involved in cervical cancer in order to investigate their features and affect on this specific pathology. Numerous raw data was collected and organized into purposeful structures, and adaptive procedures were defined for application to the prepared data. The networks were therefore built with the factors as basic components according to their interacting associations. The networks were constructed at three levels of interdependency, including a differentially-expressed network, a related network and a global network. Comparisons and analyses were made at a systematic level rather than from an isolated gene or miRNA. Critical hubs were extracted in the core networks and notable features were discussed, including self-adaption feedback regulation. The present study expounds the pathogenesis from a novel point of view and is proposed to provide inspiration for further investigation and therapy.


Acinetobacter sp. DW-1 immobilized on polyhedron hollow polypropylene balls and analysis of transcriptome and proteome of the bacterium during phenol biodegradation process.

  • Qihui Gu‎ et al.
  • Scientific reports‎
  • 2017‎

Phenol is a hazardous chemical known to be widely distributed in aquatic environments. Biodegradation is an attractive option for removal of phenol from water sources. Acinetobacter sp. DW-1 isolated from drinking water biofilters can use phenol as a sole carbon and energy source. In this study, we found that Immobilized Acinetobacter sp. DW-1cells were effective in biodegradation of phenol. In addition, we performed proteome and transcriptome analysis of Acinetobacter sp. DW-1 during phenol biodegradation. The results showed that Acinetobacter sp. DW-1 degrades phenol mainly by the ortho pathway because of the induction of phenol hydroxylase, catechol-1,2-dioxygenase. Furthermore, some novel candidate proteins (OsmC-like family protein, MetA-pathway of phenol degradation family protein, fimbrial protein and coenzyme F390 synthetase) and transcriptional regulators (GntR/LuxR/CRP/FNR/TetR/Fis family transcriptional regulator) were successfully identified to be potentially involved in phenol biodegradation. In particular, MetA-pathway of phenol degradation family protein and fimbrial protein showed a strong positive correlation with phenol biodegradation, and Fis family transcriptional regulator is likely to exert its effect as activators of gene expression. This study provides valuable clues for identifying global proteins and genes involved in phenol biodegradation and provides a fundamental platform for further studies to reveal the phenol degradation mechanism of Acinetobacter sp.


Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: Insights into genome structures, mutational hotspots, comparative and phylogenetic analysis with its congeneric species.

  • Chao Luo‎ et al.
  • PloS one‎
  • 2021‎

Impatiens L., the largest genus in the family Balsaminaceae with approximately 1000 species, is a controversial and complex genus that includes many economically important species well known for medicinal and ornamental values. However, there is limited knowledge of molecular phylogeny and chloroplast genomics, and uncertainties still exist at a taxonomic level. In this study, we have assembled four chloroplast genomics specimens of Impatiens cyanantha and Impatiens monticola, which are found at the different altitudes of Guizhou and Yunnan in China, and compared them with previously published three wild Balsaminaceae species (Impatiens piufanensis, Impatiens glandlifera, and Hydrocera triflora). The complete chloroplast genome sequences ranged from 152,236 bp (I. piufanensis) to 154,189 bp (H. triflora) and encoded 115 total distinct genes, of which 81 were protein-coding, 30 were distinct transfer RNA genes(tRNA), and 4 were ribosomal RNA genes (rRNA). A comparative analysis of I. cyanantha (Guizhou) vs. I. cyanantha (Yunnan) and I. monticola (Guizhou) vs. I. monticola (Yunnan) revealed minor changes in lengths; however, similar gene contents, gene orders, and GC contents existed among them. Interestingly, highly coding and non-coding genes, and regions matK, psbK, atpH-atpI, trnC-trnT, petN, psbM, atpE, rbcL, accD, psaL, rps3-rps19, ndhG-ndhA,rpl16, rpoB, ndhB, ndhF, ycf1, and ndhH were found, which could be suitable for identification of species and phylogenetic studies. During the comparison between I. cyanantha (Guizhou) and I. cyanantha (Yunnan), we observed that the rps4, ycf2, ndhF, ycf1, and rpoC2 genes underwent positive selection. Meanwhile, in the comparative study of I. monticola (Guizhou) vs. I. monticola (Yunnan), The accD and ycf1 genes were positively selected. Additionally, phylogenetic relationships based on maximum likelihood (ML) and Bayesian inference (BI) among whole chloroplast genomes showed that a sister relationship with I. monticola (Guizhou) and I. monticola (Yunnan) formed a clade with I.piufanensis proving their close connection. Besides, I.cyanantha (Guizhou) and I. cyanantha (Yunnan) formed a clade with I. glandlifera. Along with the findings and the results, the current study might provide valuable significant genomic resources for systematics and evolution of the genus impatiens in different altitudes of regions.


Genome-wide identification, evolution analysis of cytochrome P450 monooxygenase multigene family and their expression patterns during the early somatic embryogenesis in Dimocarpus longan Lour.

  • Chunyu Zhang‎ et al.
  • Gene‎
  • 2022‎

Cytochrome P450 (CYP), a multi-gene superfamily, is involved in a broad range of physiological processes, including hormone responses and secondary metabolism throughout the plant life cycle. Longan (Dimocarpus longan), a subtropical and tropical evergreen fruit tree, its embryonic development is closely related to the yield and quality of fruits. And a large number of secondary metabolites, such as flavonoids and carotenoids, are also produced during the longan somatic embryogenesis (SE). It is important, therefore, to study potential functions of CYPs in longan. However, the knowledge of longan CYPs is still very limited. Here, a total of 327 DlCYPs were identified using the genome-search method, which could be classified into nine clans. The expansion of the DlCYP family was mainly caused by tandem duplication (TD) events. Promoter cis-acting elements analysis elucidated that DlCYPs played important roles in hormonal responses. A total of 246 DlCYPs exhibited six different expression patterns during the early SE based on longan transcriptomic data. Eight DlCYPs underwent alternative splicing (AS) events, and they might produce one to six isoforms. And the AS transcript of DlCYP97C1 might act as an alternative to the full-length transcript in ICpEC and GE stages. Finally, protein-protein interaction (PPI) networks and miRNA target prediction elucidated that DlCYPs might be involved in the phenylpropanoid metabolic pathway and primarily regulated and targeted by miR413. In summary, our results provided valuable inventory for understanding the classification and biological functions of DlCYPs and provided insight into further functional verification of DlCYPs during the longan early SE.


Morphology and phylogenetic analysis of two new deep-sea species of Chrysogorgia (Cnidaria, Octocorallia, Chrysogorgiidae) from Kocebu Guyot (Magellan seamounts) in the Pacific Ocean.

  • Yu Xu‎ et al.
  • ZooKeys‎
  • 2019‎

Two new species of Chrysogorgia Duchassaing & Michelotti, 1864 collected from Kocebu Guyot in the Magellan seamounts of the Pacific Ocean are described and illustrated: Chrysogorgia ramificans sp. nov. collected from a depth of 1831 m and Chrysogorgia binata sp. nov. collected from a depth of 1669 m. Chrysogorgia ramificans sp. nov. belongs to the Chrysogorgia "group A, Spiculosae" with rods distributed in body wall and tentacles, and C. binata sp. nov. belongs to the "group C, Squamosae typicae" with rods and/or spindles not present but only scales. Chrysogorgia ramificans sp. nov. differs from congeners by its main stem with 2/5R branching sequence at the bottom forming two large bottlebrush-shaped branches with 1/3R branching sequence at the top. Chrysogorgia binata sp. nov. is similar to C. scintillans Bayer & Stefani, 1988, but differs by its larger polyps, larger sclerites in the body wall, and different scales in the upper part of polyps. The mtMutS genetic distances between C. ramificans sp. nov. and C. binata sp. nov. and congeners are in the range of 0.33%-2.28% and 0.33%-2.94%, respectively, while the intraspecific distances are in the range of 0-0.16%. Molecular phylogenetic analysis indicates that C. ramificans sp. nov. is clustered with C. monticola Cairns, 2007 and C. binata sp. nov. is clustered with C. chryseis Bayer & Stefani, 1988, both with high support indicating close relationships.


Genome-Wide Analysis and Expression Profiling of Glutathione Reductase Gene Family in Oat (Avena sativa) Indicate Their Responses to Abiotic Stress during Seed Imbibition.

  • Ming Sun‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Abiotic stress disturbs plant cellular redox homeostasis, inhibiting seed germination and plant growth. This is a crucial limitation to crop yield. Glutathione reductase (GR) is an important component of the ascorbate-glutathione (AsA-GSH) cycle which is involved in multiple plant metabolic processes. In the present study, GRs in A. sativa (AsGRs) were selected to explore their molecular characterization, phylogenetic relationship, and RNA expression changes during seed imbibition under abiotic stress. Seven AsGR genes were identified and mapped on six chromosomes of A, C, and D subgenomes. Phylogenetic analysis and subcellular localization of AsGR proteins divided them into two sub-families, AsGR1 and AsGR2, which were predicted to be mainly located in cytoplasm, mitochondrion, and chloroplast. Cis-elements relevant to stress and hormone responses are distributed in promoter regions of AsGRs. Tissue-specific expression profiling showed that AsGR1 genes were highly expressed in roots, leaves, and seeds, while AsGR2 genes were highly expressed in leaves and seeds. Both AsGR1 and AsGR2 genes showed a decreasing-increasing expression trend during seed germination under non-stress conditions. In addition, their responses to drought, salt, cold, copper, H2O2, and ageing treatments were quite different during seed imbibition. Among the seven AsGR genes, AsGR1-A, AsGR1-C, AsGR2-A, and AsGR2-D responded more significantly, especially under drought, ageing, and H2O2 stress. This study has laid the ground for the functional characterization of GR and the improvement of oat stress tolerance and seed vigor.


COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations.

  • Yina Cun‎ et al.
  • Human vaccines & immunotherapeutics‎
  • 2021‎

T cell immunity, such as CD4 and/or CD8 T cell responses, plays a vital role in controlling the virus infection and pathological damage. Several studies have reported SARS-CoV-2 proteins could serve as ideal vaccine candidates against SARS-CoV-2 infection by activating the T cell responses. In the current study, based on the SARS-CoV-2 sequence and distribution of host human leukocyte antigen (HLA), we predicted the possible epitopes for the vaccine against SARS-CoV-2 infections. Firstly, the current study retrieved the SARS-CoV-2 S and N protein sequences from the NCBI Database. Then, using the Immune Epitope Database Analysis Resource, we predicted the CTL epitopes of the SARS-CoV-2 S and N proteins according to worldwide frequency distributions of HLA-A, -B, and -C alleles (>1%). Our results predicted 90 and 106 epitopes of N and S proteins, respectively. Epitope cluster analysis showed 16 and 34 respective clusters of SARS-CoV-2 N and S proteins, which covered 95.91% and 96.14% of the global population, respectively. After epitope conservancy analysis, 8 N protein epitopes and 6 S protein epitopes showed conservancy within two SARS-CoV-2 types. Of these 14 epitopes, 13 could cover SARS coronavirus and Bat SARS-like coronavirus. The remaining epitope (KWPWYIWLGF1211-1220) could cover MERS coronavirus. Finally, the 14-epitope combination could vaccinate 89.60% of all individuals worldwide. Our results propose single or combined CTL epitopes predicted in the current study as candidates for vaccines to effectively control SARS-CoV-2 infection and development.


Genome-wide analysis and prediction of genes involved in the biosynthesis of polysaccharides and bioactive secondary metabolites in high-temperature-tolerant wild Flammulina filiformis.

  • Juan Chen‎ et al.
  • BMC genomics‎
  • 2020‎

Flammulina filiformis (previously known as Asian F. velutipes) is a popular commercial edible mushroom. Many bioactive compounds with medicinal effects, such as polysaccharides and sesquiterpenoids, have been isolated and identified from F. filiformis, but their biosynthesis and regulation at the molecular level remains unclear. In this study, we sequenced the genome of the wild strain F. filiformis Liu355, predicted its biosynthetic gene clusters (BGCs) and profiled the expression of these genes in wild and cultivar strains and in different developmental stages of the wild F. filiformis strain by a comparative transcriptomic analysis.


Chemical composition and therapeutic mechanism of Xuanbai Chengqi Decoction in the treatment of COVID-19 by network pharmacology, molecular docking and molecular dynamic analysis.

  • Liming Fan‎ et al.
  • Molecular diversity‎
  • 2023‎

Xuanbai Chengqi Decoction (XBCQD), a classic traditional Chinese medicine, has been widely used to treat COVID-19 in China with remarkable curative effect. However, the chemical composition and potential therapeutic mechanism is still unknown. Here, we used multiple open-source databases and literature mining to select compounds and potential targets for XBCQD. The COVID-19 related targets were collected from GeneCards and NCBI gene databases. After identifying putative targets of XBCQD for the treatment of COVID-19, PPI network was constructed by STRING database. The hub targets were extracted by Cytoscape 3.7.2 and MCODE analysis was carried out to extract modules in the PPI network. R 3.6.3 was used for GO enrichment and KEGG pathway analysis. The effective compounds were obtained via network pharmacology and bioinformatics analysis. Drug-likeness analysis and ADMET assessments were performed to select core compounds. Moreover, interactions between core compounds and hub targets were investigated through molecular docking, molecular dynamic (MD) simulations and MM-PBSA calculations. As a result, we collected 638 targets from 61 compounds of XBCQD and 845 COVID-19 related targets, of which 79 were putative targets. Based on the bioinformatics analysis, 10 core compounds and 34 hub targets of XBCQD for the treatment of COVID-19 were successfully screened. The enrichment analysis of GO and KEGG indicated that XBCQD mainly exerted therapeutic effects on COVID-19 by regulating signal pathways related to viral infection and inflammatory response. Meanwhile, the results of molecular docking showed that there was a stable binding between the core compounds and hub targets. Moreover, MD simulations and MM-PBSA analyses revealed that these compounds exhibited stable conformations and interacted well with hub targets during the simulations. In conclusion, our research comprehensively explained the multi-component, multi-target, and multi-pathway intervention mechanism of XBCQD in the treatment of COVID-19, which provided evidence and new insights for further research.


Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu(2+) Treatment.

  • Meifang Quan‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu(2+.) Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain.


Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians.

  • Wanling Yang‎ et al.
  • American journal of human genetics‎
  • 2013‎

Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases.


Time-Course Transcriptome Analysis Reveals Distinct Phases and Identifies Two Key Genes during Severe Fever with Thrombocytopenia Syndrome Virus Infection in PMA-Induced THP-1 Cells.

  • Tao Huang‎ et al.
  • Viruses‎
  • 2023‎

In recent years, there have been significant advancements in the research of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV). However, several limitations and challenges still exist. For instance, researchers face constraints regarding experimental conditions and the feasibility of sample acquisition for studying SFTSV. To enhance the quality and comprehensiveness of SFTSV research, we opted to employ PMA-induced THP-1 cells as a model for SFTSV infection. Multiple time points of SFTSV infection were designed to capture the dynamic nature of the virus-host interaction. Through a comprehensive analysis utilizing various bioinformatics approaches, including diverse clustering methods, MUfzz analysis, and LASSO/Cox machine learning, we performed dynamic analysis and identified key genes associated with SFTSV infection at the host cell transcriptomic level. Notably, successful clustering was achieved for samples infected at different time points, leading to the identification of two important genes, PHGDH and NLRP12. And these findings may provide valuable insights into the pathogenesis of SFTSV and contribute to our understanding of host-virus interactions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: