Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,758 papers

The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation.

  • Yu-Yin Li‎ et al.
  • PloS one‎
  • 2012‎

Testes-specific protease 50 (TSP50), a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO) cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood.


Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions.

  • Xiaoyang Zhu‎ et al.
  • PloS one‎
  • 2012‎

Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP) treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s) or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A), TBP1 (TATA binding protein 1) and TBP2 (TATA binding protein 2) genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2), 18S rRNA (18S ribosomal RNA) and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental conditions.


Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803.

  • Jie Liu‎ et al.
  • Biotechnology for biofuels‎
  • 2012‎

Recent studies have demonstrated that photosynthetic cyanobacteria could be an excellent cell factory to produce renewable biofuels and chemicals due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources. Biosynthesis of carbon-neutral biofuel alkanes with good chemical and physical properties has been proposed. However, to make the process economically feasible, one major hurdle to improve the low cell tolerance to alkanes needed to be overcome.


Changes in osmolality modulate voltage-gated calcium channels in trigeminal ganglion neurons.

  • Lei Chen‎ et al.
  • Brain research‎
  • 2008‎

Voltage-gated calcium channels (VGCCs) participate in many important physiological functions. However whether VGCCs are modulated by changes of osmolarity and involved in anisotonicity-induced nociception is still unknown. For this reason by using whole-cell patch clamp techniques in rat and mouse trigeminal ganglion (TG) neurons we tested the effects of hypo- and hypertonicity on VGCCs. We found that high-voltage-gated calcium current (I(HVA)) was inhibited by both hypo- and hypertonicity. In rat TG neurons, the inhibition by hypotonicity was mimicked by Transient Receptor Potential Vanilloid 4 receptor (TRPV4) activator but hypotonicity did not exhibit inhibition in TRPV4(-/-) mice TG neurons. Concerning the downstream signaling pathways, antagonism of PKG pathway selectively reduced the hypotonicity-induced inhibition, whereas inhibition of PLC- and PI3K-mediated pathways selectively reduced the inhibition produced by hypertonicity. In summary, although the effects of hypo- and hypertonicity show similar phenotype, receptor and intracellular signaling pathways were selective for hypo- versus hypertonicity-induced inhibition of I(HVA).


Single tumor-initiating cells evade immune clearance by recruiting type II macrophages.

  • Xiaocan Guo‎ et al.
  • Genes & development‎
  • 2017‎

Tumor infiltrated type II (M2) macrophages promote tumorigenesis by suppressing immune clearance, promoting proliferation, and stimulating angiogenesis. Interestingly, macrophages were also found to enrich in small foci of altered hepatocytes containing liver tumor-initiating cells (TICs). However, whether and how TICs specifically recruit macrophages and the function of these macrophages in tumor initiation remain unknown due to technical difficulties. In this study, by generating genetically defined liver TICs, we demonstrate that TICs actively recruit M2 macrophages from as early as the single-cell stage. Elimination of TIC-associated macrophages (TICAMs) abolishes tumorigenesis in a manner dependent on the immune system. Mechanistically, activation of the Hippo pathway effector Yes-associated protein (YAP) underlies macrophage recruitment by TICs. These results demonstrate for the first time that macrophages play a decisive role in the survival of single TICs in vivo and provide a proof of principle for TIC elimination by targeting YAP or M2 macrophages.


Growth curve registration for evaluating salinity tolerance in barley.

  • Rui Meng‎ et al.
  • Plant methods‎
  • 2017‎

Smarthouses capable of non-destructive, high-throughput plant phenotyping collect large amounts of data that can be used to understand plant growth and productivity in extreme environments. The challenge is to apply the statistical tool that best analyzes the data to study plant traits, such as salinity tolerance, or plant-growth-related traits.


An integrated method for the identification of novel genes related to oral cancer.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2017‎

Cancer is a significant public health problem worldwide. Complete identification of genes related to one type of cancer facilitates earlier diagnosis and effective treatments. In this study, two widely used algorithms, the random walk with restart algorithm and the shortest path algorithm, were adopted to construct two parameterized computational methods, namely, an RWR-based method and an SP-based method; based on these methods, an integrated method was constructed for identifying novel disease genes. To validate the utility of the integrated method, data for oral cancer were used, on which the RWR-based and SP-based methods were trained, thereby building two optimal methods. The integrated method combining these optimal methods was further adopted to identify the novel genes of oral cancer. As a result, 85 novel genes were inferred, among which eleven genes (e.g., MYD88, FGFR2, NF-κBIA) were identified by both the RWR-based and SP-based methods, 70 genes (e.g., BMP4, IFNG, KITLG) were discovered only by the RWR-based method and four genes (L1R1, MCM6, NOG and CXCR3) were predicted only by the SP-based method. Extensive analyses indicate that several novel genes have strong associations with cancers, indicating the effectiveness of the integrated method for identifying disease genes.


miR-888 functions as an oncogene and predicts poor prognosis in colorectal cancer.

  • Su-Jun Gao‎ et al.
  • Oncology letters‎
  • 2018‎

MicroRNAs (miRNAs) are important regulators of tumor formation, progression and metastasis. The present study characterized a novel miRNA (miR)-888, as a potent oncomiR in human colorectal cancer (CRC). The clinicopathological investigation on 126 cases of CRC patients demonstrated that the expression level of miR-888 was significantly upregulated in tumors compared with adjacent healthy tissue, and was associated with tumor stage and histological differentiation. A Kaplan-Meier analysis and log-rank test demonstrated that CRC patients with increased miR-888 expression exhibited a decreased overall survival (OS) and disease-free survival (DFS) compared with patients with low miR-888 expression. Further univariate and multivariate analyses identified miR-888 as an independent prognostic factor for poor survival outcome in CRC patients. To determine the biological role of miR-888 in human CRC, in vitro Cell Counting kit-8, wound healing and transwell assays were performed and demonstrated that miR-888 contributed greatly to CRC cell proliferation, invasion and metastasis. Furthermore, potential targets of miR-888 were investigated using a luciferase reporter assay, followed by polymerase chain reaction and western blot analysis. The findings revealed that miR-888 directly bound to the 3'-untranslated region of mothers against decapentaplegic-4 and thus inhibited its expression and promoted the tumor growth factor-1-induced cancer metastasis signaling. The results of the present study identified miR-888 as an oncogenic miRNA in CRC and provide a foundation for promising research in the future regarding this predictive and prognostic biomarker.


N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability.

  • Kevin Kruse‎ et al.
  • The Journal of cell biology‎
  • 2019‎

Vascular endothelial (VE)-cadherin forms homotypic adherens junctions (AJs) in the endothelium, whereas N-cadherin forms heterotypic adhesion between endothelial cells and surrounding vascular smooth muscle cells and pericytes. Here we addressed the question whether both cadherin adhesion complexes communicate through intracellular signaling and contribute to the integrity of the endothelial barrier. We demonstrated that deletion of N-cadherin (Cdh2) in either endothelial cells or pericytes increases junctional endothelial permeability in lung and brain secondary to reduced accumulation of VE-cadherin at AJs. N-cadherin functions by increasing the rate of VE-cadherin recruitment to AJs and induces the assembly of VE-cadherin junctions. We identified the dual Rac1/RhoA Rho guanine nucleotide exchange factor (GEF) Trio as a critical component of the N-cadherin adhesion complex, which activates both Rac1 and RhoA signaling pathways at AJs. Trio GEF1-mediated Rac1 activation induces the recruitment of VE-cadherin to AJs, whereas Trio GEF2-mediated RhoA activation increases intracellular tension and reinforces Rac1 activation to promote assembly of VE-cadherin junctions and thereby establish the characteristic restrictive endothelial barrier.


miR-221/222-Mediated Inhibition of Autophagy Promotes Dexamethasone Resistance in Multiple Myeloma.

  • Jian Xu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

Inherent or acquired resistance to chemotherapeutic drugs is still an obstacle for the treatment of multiple myeloma (MM). MicroRNA dysregulation is related to the development of chemoresistance in cancers. However, its role in chemoresistance of MM is largely unknown. Here we demonstrated that miR-221/222 were upregulated in plasma cells from patients with MM, especially those with relapsed or refractory disease. Moreover, expression levels of miR-221/222 were inversely correlated with dexamethasone (Dex) sensitivity of human MM cell lines. Importantly, we found that Dex induced pro-death autophagy in MM cells and the inhibition of autophagy significantly decreased Dex-induced cell death. Mechanistically, autophagy-related gene 12 (ATG12) was identified as a novel target gene of miR-221/222, and miR-221/222 overexpression inhibited autophagy by directly targeting ATG12 and the p27kip (p27)-mammalian target of rapamycin (mTOR) pathway. Indeed, Dex treatment decreased the expression of miR-221/222, thereby activating the ATG12/p27-mTOR autophagy-regulatory axis and inducing cell death in Dex-sensitive MM cells. Furthermore, both in vitro and in vivo results showed that the inhibitions of miR-221/222 increased the expression of ATG12 and p27 and functionally induced extended autophagy and cell death of MM cells. In conclusion, our findings demonstrated the crucial role of the miR-221/222-ATG12/p27-mTOR autophagy-regulatory axis in Dex resistance of MM, and they suggest potential prediction and treatment strategies for glucocorticoid resistance.


Associations between polymorphisms of the CXCL12 and CNNM2 gene and hypertension risk: A case-control study.

  • Xianxia Liu‎ et al.
  • Gene‎
  • 2018‎

Hypertension is the most important risk factor for cardiovascular and cerebrovascular diseases. The study found that CXCL12 and CNNM2 gene affects the risk of coronary heart disease, but the relationship with hypertension is unclear. The aim of this research is to explore the association between CXCL12 and CNNM2 gene and hypertension in Chinese Han population.


Streptozotocin‑induced diabetic mice exhibit reduced experimental choroidal neovascularization but not corneal neovascularization.

  • Gaoqin Liu‎ et al.
  • Molecular medicine reports‎
  • 2018‎

The present study aimed to investigate the effects of diabetes mellitus (DM) on the generation of experimental corneal neovascularization (CrNV) and choroidal neovascularization (ChNV). Diabetes was induced in mice by intraperitoneal injection of streptozotocin (STZ). Experimental CrNV and ChNV were induced by alkali injury and laser photocoagulation, respectively. CrNV and ChNV were compared between the STZ‑induced diabetic mice and control mice two weeks after injury. Relative expression of angiogenic factors was quantified by reverse transcription‑quantitative polymerase chain reaction, and progenitor cell or macrophage accumulation in the early phase following injury was examined by flow cytometric analysis. Compared with the alkali‑injured normal mice, the alkali‑injured diabetic mice (STZ‑induced) exhibited no significant difference in CrNV occurrence, whereas the laser‑injured diabetic mice exhibited significantly reduced levels of ChNV compared with those of the laser‑injured control animals. The laser‑induced intrachoroidal mRNA expression levels of angiogenic factors, including vascular endothelial growth factor, hypoxia‑induced factor‑1α, chemokine (C‑C motif) ligand 3, and stromal cell‑derived factor‑1α, were reduced in the laser‑injured diabetic mice when compared with laser‑injured control mice. Furthermore, the laser‑induced intrachoroidal infiltration of c‑Kit+ progenitor cells was impaired in the laser‑injured diabetic mice compared with the laser‑injured control mice. Overall, diabetes did not exert a significant effect on the generation of experimental CrNV. However, diabetes reduced laser‑induced ChNV through downregulation of intrachoroidal progenitor cell infiltration and angiogenic factor expression.


Transcriptomes of cochlear inner and outer hair cells from adult mice.

  • Yi Li‎ et al.
  • Scientific data‎
  • 2018‎

Inner hair cells (IHCs) and outer hair cells (OHCs) are the two anatomically and functionally distinct types of mechanosensitive receptor cells in the mammalian cochlea. The molecular mechanisms defining their morphological and functional specializations are largely unclear. As a first step to uncover the underlying mechanisms, we examined the transcriptomes of IHCs and OHCs isolated from adult CBA/J mouse cochleae. One thousand IHCs and OHCs were separately collected using the suction pipette technique. RNA sequencing of IHCs and OHCs was performed and their transcriptomes were analyzed. The results were validated by comparing some IHC and OHC preferentially expressed genes between present study and published microarray-based data as well as by real-time qPCR. Antibody-based immunocytochemistry was used to validate preferential expression of SLC7A14 and DNM3 in IHCs and OHCs. These data are expected to serve as a highly valuable resource for unraveling the molecular mechanisms underlying different biological properties of IHCs and OHCs as well as to provide a road map for future characterization of genes expressed in IHCs and OHCs.


Altered composition of the gut microbiome in patients with drug-resistant epilepsy.

  • Anjiao Peng‎ et al.
  • Epilepsy research‎
  • 2018‎

The relationship between the gut microbiota and the central nervous system has been gradually recognized while whether microbiome plays a role in the pathogenesis of drug-resistant epilepsy is still unknown. The aim of our work was to explore whether dysbiosis is involved in the mechanism of drug-resistant epilepsy.


Comprehensive analysis of long noncoding RNA-associated competing endogenous RNA network in cholangiocarcinoma.

  • Wei Song‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Long non-coding RNAs (lncRNAs) can interact with microRNAs (miRNAs) as a competing endogenous RNA (ceRNA) to regulate the expression of target genes, which can largely influence on tumorigenesis and tumor progression. However, the role of lncRNA-mediated ceRNAs in cholangiocarcinoma (CCA) remains unknown. This study aimed to develop novel lncRNAs as well as their action mechanisms in CCA.


Resveratrol Inhibits the TGF-β1-Induced Proliferation of Cardiac Fibroblasts and Collagen Secretion by Downregulating miR-17 in Rat.

  • Yao Zhang‎ et al.
  • BioMed research international‎
  • 2018‎

Myocardial fibrosis (MF) can cause heart remodeling and it is an independent risk factor for malignant arrhythmias, sudden cardiac death, and other malignant cardiovascular events. It is often characterized by myocardial interstitial collagen deposition and hyperproliferation of cardiac fibroblasts (CFs). The transforming growth factor-β1 (TGF-β1) is the most influential profibrogenic factor. Resveratrol (RSV) is an active polyphenol substance that inhibits myocardial fibrosis. The mechanism of RSV-mediated inhibition of the proliferation of CFs at the microRNA level is not fully understood. We used TGF-β1 to induce CFs proliferation to simulate the pathogenesis of myocardial fibrosis. Neonatal rat CFs were treated with TGF-β1 in the presence or absence of resveratrol. Cell proliferation was measured using the CCK-8 and EdU assay. Collagen secretion was measured using hydroxyproline kit. Further, qPCR analysis was performed to determine microRNA levels after TGF-β1 or resveratrol treatment. To identify the target gene for miR-17, miR-17 was overexpressed or silenced, and the mRNA and protein levels of Smad7 were assessed. The effects of miR-17 silencing or Smad7 overexpression on cell proliferation and collagen secretion were also examined. Resveratrol treatment significantly decreased the TGF-β1-induced CF proliferation and collagen secretion. Resveratrol also decreased the levels of miR-17, miR-34a, and miR-181a in TGF-β1-treated CFs. Overexpression of miR-17 decreased the Smad7 mRNA and protein levels while silencing miR-17 increased them. Additionally, silencing miR-17 or overexpressing Smad7 decreased the TGF-β1-induced CFs proliferation and collagen secretion. In conclusion, resveratrol inhibits TGF-β1-induced CFs proliferation and collagen secretion. This inhibitory effect of resveratrol is orchestrated by the downregulation of miR-17 and the regulation of Smad7.


Metabolic regulation of T cell development by Sin1-mTORC2 is mediated by pyruvate kinase M2.

  • Xinxing Ouyang‎ et al.
  • Journal of molecular cell biology‎
  • 2019‎

Glucose metabolism plays a key role in thymocyte development. The mammalian target of rapamycin complex 2 (mTORC2) is a critical regulator of cell growth and metabolism, but its role in early thymocyte development and metabolism has not been fully studied. We show here that genetic ablation of Sin1, an essential component of mTORC2, in T lineage cells results in severely impaired thymocyte development at the CD4-CD8- double negative (DN) stages but not at the CD4+CD8+ double positive (DP) or later stages. Notably, Sin1-deficient DN thymocytes show markedly reduced proliferation and glycolysis. Importantly, we discover that the M2 isoform of pyruvate kinase (PKM2) is a novel and crucial Sin1 effector in promoting DN thymocyte development and metabolism. At the molecular level, we show that Sin1-mTORC2 controls PKM2 expression through an AKT-dependent PPAR-γ nuclear translocation. Together, our study unravels a novel mTORC2-PPAR-γ-PKM2 pathway in immune-metabolic regulation of early thymocyte development.


[Pollution Characteristics and Health Risk Assessment of Microorganism Pollutions in the Beiyun River].

  • Lei Chen‎ et al.
  • Huan jing ke xue= Huanjing kexue‎
  • 2019‎

Microorganism pollution in rivers is of great importance to the protection of watershed water quality and public health management. As a typical watershed of the Haihe River watershed, the Beiyun River was chosen as the study area, and the characteristics and health risk of microorganism pollution were assessed from a comprehensive perspective. The results showed that the microbial contamination of the fecal sources was serious during the wet season, and the microbial amount at most river sections was more than 105 MPN·L-1. During the normal season and dry season, the microbial amount was approximately 103-105 MPN·L-1. Therefore, no obvious change could be observed. The fecal pollution in the agricultural river sections was the most severe, and the water quality of over 60% of these river sections was below the state Grade V level. The fecal microbial biomass of some urban river sections increased from 103 MPN·L-1 to 106MPN·L-1 after the rainfall event, indicating an obvious change of fecal microbial pollution during the rainfall process. For the Beiyun River, the exposure risk of the fecal microbial biomass was mainly between 0.015-0.035, while the Lianhua River, Macao River, lower reaches of Qinghe River, and lower reaches of Wenyu River were hotspots for contamination. Greater attention should be paid to these areas.


Factors predicting uncontrolled seizures in epilepsy with auditory features.

  • Lin Zhang‎ et al.
  • Seizure‎
  • 2019‎

To analyse the factors predicting uncontrolled seizures in epilepsy with auditory features (EAF).


CNKSR2 mutation causes the X-linked epilepsy-aphasia syndrome: A case report and review of literature.

  • Ying Sun‎ et al.
  • World journal of clinical cases‎
  • 2018‎

The mutation in CNKSR2 leads to a broad spectrum of phenotypic variability and manifests as an X-linked intellectual disability. However, we reported that the male patient in this study not only had intellectual disability but also epileptic seizures. In addition, there were progressive language impairment, attention deficit hyperactivity disorder and autism. Electroencephalograms showed continuous spike-and-wave during sleep. Genetic testing revealed a de novo mutation of the CNKSR2 gene (c.2185C>T, p.Arg729Ter) in the child that was not detected in the parents. Therefore, the child was diagnosed with X-linked epilepsy aphasia syndrome. Deletion of the CNKSR2 gene has been rarely reported in epilepsy aphasia syndrome, but no de novo mutation has been found in this gene. This report not only adds to the spectrum of epilepsy aphasia syndrome but also helps clinicians in diagnosis and genetic counseling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: