Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 117 papers

The effect of autophagy and mitochondrial fission on Harderian gland is greater than apoptosis in male hamsters during different photoperiods.

  • Jin-Hui Xu‎ et al.
  • PloS one‎
  • 2020‎

Photoperiod is an important factor of mammalian seasonal rhythm. Here, we studied morphological differences in the Harderian gland (HG), a vital photosensitive organ, in male striped dwarf hamsters (Cricetulus barabensis) under different photoperiods (short photoperiod, SP; moderate photoperiod, MP; long photoperiod, LP), and investigated the underlying molecular mechanisms related to these morphological differences. Results showed that carcass weight and HG weight were lower under SP and LP conditions. There was an inverse correlation between blood melatonin levels and photoperiod in the order SP > MP > LP. Protein expression of hydroxyindole-O-methyltransferase (HIOMT), a MT synthesis-related enzyme, was highest in the SP group. Protein expression of bax/bcl2 showed no significant differences, indicating that the level of apoptosis remained stable. Protein expression of LC3II/LC3I was higher in the SP group than that in the MP group. Furthermore, comparison of changes in the HG ultrastructure demonstrated autolysosome formation in the LP, suggesting the lowest autophagy level in under MP. Furthermore, the protein expression levels of ATP synthase and mitochondrial fission factor were highest in the MP group, whereas citrate synthase, dynamin-related protein1, and fission1 remained unchanged in the three groups. The change trends of ATP synthase and citrate synthase activity were similar to that of protein expression among the three groups. In summary, the up-regulation of autophagy under SP and LP may be a primary factor leading to loss of HG weight and reduced mitochondrial energy supply capacity.


The current status of clinical trials focusing on nasopharyngeal carcinoma: A comprehensive analysis of ClinicalTrials.gov database.

  • Hao Peng‎ et al.
  • PloS one‎
  • 2018‎

Clinical Trials have emerged as the main force in driving the development of medicine. However, little is known about the current status of clinical trials regarding nasopharyngeal carcinoma (NPC). This study aimed at providing a comprehensive landscape of NPC-related trials on the basis of ClinicalTrials.gov database.


Polysaccharides isolated from Cordyceps Sinensis contribute to the progression of NASH by modifying the gut microbiota in mice fed a high-fat diet.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2020‎

Various dietary fibers are considered to prevent obesity by modulating the gut microbiota. Cordyceps sinensis polysaccharide (CSP) is a soluble dietary fiber known to have protective effects against obesity and related diseases, but whether these effects induce any side effects remains unknown. The function and safety of CSP were tested in high-fat diet (HFD)-feding C57BL/6J mice. The results revealed that even though CSP supplementation could prevent an increase in body weight, it aggravated liver fibrosis and steatosis as evidenced by increased inflammation, lipid metabolism markers, insulin resistance (IR) and alanine aminotransferase (ALT) in HFD-induced obesity. 16S rDNA gene sequencing was used to analyze the gut microbiota composition, and the relative abundance of the Actinobacteria phylum, including the Olsenella genus, was significantly higher in CSP-treated mice than in HFD-fed mice. CSP supplementation may increase the proportion of Actinobacteria, which can degrade CSP. The high level of Actinobacteria aggravated the disorder of the intestinal flora and contributed to the progression from obesity to nonalcoholic steatohepatitis (NASH) and related diseases.


Diverse evolutionary rates and gene duplication patterns among families of functional olfactory receptor genes in humans.

  • Yupeng Wang‎ et al.
  • PloS one‎
  • 2023‎

In humans, odors are detected by ~400 functional olfactory receptor (OR) genes. The superfamily of functional OR genes can be further divided into tens of families. In large part, the OR genes have experienced extensive tandem duplications, which have led to gene gains and losses. However, whether different OR gene families have experienced distinct modes of gene duplication has yet to be reported. We conducted comparative genomic and evolutionary analyses for human functional OR genes. Based on analysis of human-mouse 1-1 orthologs, we found that human functional OR genes show higher-than-average evolutionary rates, and there are significant differences among families of functional OR genes. Via comparison with seven vertebrate outgroups, families of human functional OR genes show different extents of gene synteny conservation. Although the superfamily of human functional OR genes is enriched in tandem and proximal duplications, there are particular families which are enriched in segmental duplications. These findings suggest that human functional OR genes may be governed by different evolutionary mechanisms and that large-scale gene duplications have contributed to the early evolution of human functional OR genes.


A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in Arabidopsis thaliana.

  • Liucun Zhu‎ et al.
  • PloS one‎
  • 2016‎

Biologically, fruits are defined as seed-bearing reproductive structures in angiosperms that develop from the ovary. The fertilization, development and maturation of fruits are crucial for plant reproduction and are precisely regulated by intrinsic genetic regulatory factors. In this study, we used Arabidopsis thaliana as a model organism and attempted to identify novel genes related to fruit-associated biological processes. Specifically, using validated genes, we applied a shortest-path-based method to identify several novel genes in a large network constructed using the protein-protein interactions observed in Arabidopsis thaliana. The described analyses indicate that several of the discovered genes are associated with fruit fertilization, development and maturation in Arabidopsis thaliana.


Transcriptome Analysis of the Midgut of the Chinese Oak Silkworm Antheraea pernyi Infected with Antheraea pernyi Nucleopolyhedrovirus.

  • Xi-Sheng Li‎ et al.
  • PloS one‎
  • 2016‎

The Antheraea pernyi nucleopolyhedrovirus (ApNPV) is an exclusive pathogen of A. pernyi. The intense interactions between ApNPV and A. pernyi cause a series of physiological and pathological changes to A. pernyi. However, no detailed report exists regarding the molecular mechanisms underlying the interactions between ApNPV and A. pernyi. In this study, four cDNA libraries of the A. pernyi midgut, including two ApNPV-infected groups and two control groups, were constructed for transcriptomic analysis to provide new clues regarding the molecular mechanisms that underlie these interactions. The transcriptome of the A. pernyi midgut was de novo assembled using the Trinity platform because of the lack of a genome resource for A. pernyi. Compared with the controls, a total of 5,172 differentially expressed genes (DEGs) were identified, including 2,183 up-regulated and 2,989 down-regulated candidates, of which 2,965 and 911 DEGs were classified into different GO categories and KEGG pathways, respectively. The DEGs involved in A. pernyi innate immunity were classified into several categories, including heat-shock proteins, apoptosis-related proteins, serpins, serine proteases and cytochrome P450s. Our results suggested that these genes were related to the immune response of the A. pernyi midgut to ApNPV infection via their essential roles in regulating a variety of physiological processes. Our results may serve as a basis for future research not only on the molecular mechanisms of ApNPV invasion but also on the anti-ApNPV mechanism of A. pernyi.


The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life.

  • Yu-Hang Zhang‎ et al.
  • PloS one‎
  • 2016‎

A drug's biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO) terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347), monoamine transmembrane transporter activity (GO:0008504), negative regulation of synaptic transmission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives.


Discovery of new candidate genes related to brain development using protein interaction information.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2015‎

Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development.


Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2015‎

Cystic fibrosis transmembrane conductance regulator (CFTR) is the principal apical route for transepithelial fluid transport induced by enterotoxin. Inhibition of CFTR has been confirmed as a pharmaceutical approach for the treatment of secretory diarrhea. Many traditional Chinese herbal medicines, like Rhodiola kirilowii (Regel) Maxim, have long been used for the treatment of secretory diarrhea. However, the active ingredients responsible for their therapeutic effectiveness remain unknown. The purpose of this study is to identify CFTR inhibitors from Rhodiola kirilowii (Regel) Maxim via bioactivity-directed isolation strategy. We first identified fractions of Rhodiola kirilowii (Regel) Maxim that inhibited CFTR Cl- channel activity. Further bioactivity-directed fractionation led to the identification of (-)-epigallocatechin-3-gallate (EGCG) as CFTR Cl- channel inhibitor. Analysis of 5 commercially available EGCG analogs including (+)-catechins (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG) and EGCG revealed that ECG also had CFTR inhibitory activity. EGCG dose-dependently and reversibly inhibited CFTR Cl- channel activity in transfected FRT cells with an IC50 value around 100 μM. In ex vivo studies, EGCG and ECG inhibited CFTR-mediated short-circuit currents in isolated rat colonic mucosa in a dose-dependent manner. In an intestinal closed-loop model in mice, intraluminal application of EGCG (10 μg) and ECG (10 μg) significantly reduced cholera toxin-induced intestinal fluid secretion. CFTR Cl- channel is a molecular target of natural compounds EGCG and ECG. CFTR inhibition may account, at least in part, for the antidiarrheal activity of Rhodiola kirilowii (Regel) Maxim. EGCG and ECG could be new lead compounds for development of CFTR-related diseases such as secretory diarrhea.


A genome scan for selection signatures in pigs.

  • Yunlong Ma‎ et al.
  • PloS one‎
  • 2015‎

Identifying signatures of selection can provide a straightforward insight into the mechanism of artificial selection and further uncover the causal genes related to the phenotypic variation. Based on Illumina Porcine60KSNP chip data, four complementary methods, Long-Range Haplotype (LRH), Tajima's D, Cross Population Extend Haplotype Homozygosity Test (XPEHH) and FST, were implemented in this study to detect the selection signatures in the whole genome of one typical Chinese indigenous breed, Rongchang, one Chinese cultivated breed, Songliao, and two western breeds, Landrace and Yorkshire. False Discovery Rate (FDR) was implemented to control the false positive rates. In our study, a total of 159, 127, 179 and 159 candidate selection regions with average length of 0.80 Mb, 0.73 Mb, 0.78 Mb and 0.73 Mb were identified in Landrace, Rongchang, Songliao and Yorkshire, respectively, that span approximately 128.00 Mb, 92.38 Mb, 130.30 Mb and 115.40 Mb and account for approximately 3.74-5.33% of genome across all autosomes. The selection regions of 11.52 Mb shared by Landrace and Yorkshire were the longest when chosen pairs from the pool of the four breeds were examined. The overlaps between Yorkshire and Songliao, approximately 9.20 Mb, were greater than those of Yorkshire and Rongchang. Meanwhile, the overlaps between Landrace and Songliao were greater than those of Landrace and Rongchang but less than those of Songliao and Ronchang. Bioinformatics analysis showed that the genes/QTLs relevant to fertility, coat color, and ear morphology were found in candidate selection regions. Some genes, such as LEMD3, MC1R, KIT, TRHR etc. that were reported under selection, were confirmed in our study, and this analysis also demonstrated the diversity of breeds.


Prevalence and risk factors of diabetes and diabetic retinopathy in Liaoning province, China: a population-based cross-sectional study.

  • Yuedong Hu‎ et al.
  • PloS one‎
  • 2015‎

To evaluate the prevalence and risk factors of diabetes and diabetic retinopathy (DR) in northeast area of China with a population-based study.


COX-2 but not mPGES-1 contributes to renal PGE2 induction and diabetic proteinuria in mice with type-1 diabetes.

  • Zhanjun Jia‎ et al.
  • PloS one‎
  • 2014‎

Prostaglandin E2 (PGE2) has been implicated to play a pathogenic role in diabetic nephropathy (DN) but its source remains unlcear. To elucidate whether mPGES-1, the best characterized PGE2 synthase, was involved in the development of DN, we examined the renal phenotype of mPGES-1 KO mice subjected to STZ-induced type-1 diabetes. After STZ treatment, mPGES-1 WT and KO mice presented the similar onset of diabetes as shown by similar elevation of blood glucose. Meanwhile, both genotypes of mice exhibited similar increases of urinary and renal PGE2 production. In parallel with this comparable diabetic status, the kidney injury indices including the urinary albumin excretion, kidney weight and the kidney histology (PAS staining) did not show any difference between the two genotypes. By Western-blotting and quantitative qRT-PCR, mPGES-1, mPGES-2, cPGES and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) remain unaltered following six weeks of diabetes. Finally, a selective COX-2 inhibitor celecoxib (50 mg/kg/day) was applied to the STZ-treated KO mice, which resulted in significant reduction of urinary albumin excretion (KO/STZ: 141.5±38.4 vs. KO/STZ + Celebrex: 48.7±20.8 ug/24 h, p<0.05) and the blockade of renal PGE2 induction (kidney: KO/STZ: 588.7±89.2 vs. KO/STZ + Celebrex: 340.8±58.7 ug/24 h, p<0.05; urine: KO/STZ 1667.6±421.4 vs. KO/STZ + Celebrex 813.6±199.9 pg/24 h, p<0.05), without affecting the blood glucose levels and urine volume. Taken together, our data suggests that an as yet unidentified prostaglanind E synthase but not mPGES-1 may couple with COX-2 to mediate increased renal PGE2 sythsesis in DN.


Finding candidate drugs for hepatitis C based on chemical-chemical and chemical-protein interactions.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2014‎

Hepatitis C virus (HCV) is an infectious virus that can cause serious illnesses. Only a few drugs have been reported to effectively treat hepatitis C. To have greater diversity in drug choice and better treatment options, it is necessary to develop more drugs to treat the infection. However, it is time-consuming and expensive to discover candidate drugs using experimental methods, and computational methods may complement experimental approaches as a preliminary filtering process. This type of approach was proposed by using known chemical-chemical interactions to extract interactive compounds with three known drug compounds of HCV, and the probabilities of these drug compounds being able to treat hepatitis C were calculated using chemical-protein interactions between the interactive compounds and HCV target genes. Moreover, the randomization test and expectation-maximization (EM) algorithm were both employed to exclude false discoveries. Analysis of the selected compounds, including acyclovir and ganciclovir, indicated that some of these compounds had potential to treat the HCV. Hopefully, this proposed method could provide new insights into the discovery of candidate drugs for the treatment of HCV and other diseases.


New types of wheat chromosomal structural variations in derivatives of wheat-rye hybrids.

  • Zongxiang Tang‎ et al.
  • PloS one‎
  • 2014‎

Chromosomal rearrangements induced by wheat-rye hybridization is a very well investigated research topic. However, the structural alterations of wheat chromosomes in wheat-rye hybrids are seldom reported.


Predicting Anatomical Therapeutic Chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2012‎

The Anatomical Therapeutic Chemical (ATC) classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes) they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1) alimentary tract and metabolism; (2) blood and blood forming organs; (3) cardiovascular system; (4) dermatologicals; (5) genitourinary system and sex hormones; (6) systemic hormonal preparations, excluding sex hormones and insulins; (7) anti-infectives for systemic use; (8) antineoplastic and immunomodulating agents; (9) musculoskeletal system; (10) nervous system; (11) antiparasitic products, insecticides and repellents; (12) respiratory system; (13) sensory organs; (14) various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2(nd)-level, 3(rd)-level, 4(th)-level, and 5(th)-level ATC-classifications once the statistically significant benchmark data are available for these lower levels.


MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9.

  • Bo Yang‎ et al.
  • PloS one‎
  • 2011‎

Chondrogenic differentiation of mesenchymal stem cells (MSCs) is accurately regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process still remain to be defined. MicroRNAs (miRNAs) regulate various biological processes by binding target mRNA to attenuate protein synthesis. To investigate the mechanisms for miRNAs-mediated regulation of chondrogenic differentiation, we identified that miR-145 was decreased during transforming growth factor beta 3 (TGF-β3)-induced chondrogenic differentiation of murine MSCs. Subsequently, dual-luciferase reporter gene assay data demonstrated that miR-145 targets a putative binding site in the 3'-UTR of SRY-related high mobility group-Box gene 9 (Sox9) gene, the key transcription factor for chondrogenesis. In addition, over-expression of miR-145 decreased expression of Sox9 only at protein levels and miR-145 inhibition significantly elevated Sox9 protein levels. Furthermore, over-expression of miR-145 decreased mRNA levels for three chondrogenic marker genes, type II collagen (Col2a1), aggrecan (Agc1), cartilage oligomeric matrix protein (COMP), type IX collagen (Col9a2) and type XI collagen (Col11a1) in C3H10T1/2 cells induced by TGF-β3, whereas anti-miR-145 inhibitor increased the expression of these chondrogenic marker genes. Thus, our studies demonstrated that miR-145 is a key negative regulator of chondrogenic differentiation by directly targeting Sox9 at early stage of chondrogenic differentiation.


MicroRNA-27b Regulates Mitochondria Biogenesis in Myocytes.

  • Linyuan Shen‎ et al.
  • PloS one‎
  • 2016‎

MicroRNAs (miRNAs) are small, non-coding RNAs that affect the post-transcriptional regulation of various biological pathways. To date, it is not fully understood how miRNAs regulate mitochondrial biogenesis. This study aimed at the identification of the role of miRNA-27b in mitochondria biogenesis. The mitochondria content in C2C12 cells was significantly increased during myogenic differentiation and accompanied by a marked decrease of miRNA-27b expression. Furthermore, the expression of the predicted target gene of miRNA-27b, forkhead box j3 (Foxj3), was also increased during myogenic differentiation. Luciferase activity assays confirmed that miRNA-27b directly targets the 3'-untranslated region (3'-UTR) of Foxj3. Overexpression of miRNA-27b provoked a decrease of mitochondria content and diminished expression of related mitochondrial genes and Foxj3 both at mRNA and protein levels. The expression levels of downstream genes of Foxj3, such as Mef2c, PGC1α, NRF1 and mtTFA, were also decreased in C2C12 cells upon overexpression of miRNA-27b. These results suggested that miRNA-27b may affect mitochondria biogenesis by down-regulation of Foxj3 during myocyte differentiation.


Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates.

  • Mylène Perreault‎ et al.
  • PloS one‎
  • 2013‎

Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man.


GTP cyclohydrolase I and tyrosine hydroxylase gene mutations in familial and sporadic dopa-responsive dystonia patients.

  • Chunyou Cai‎ et al.
  • PloS one‎
  • 2013‎

Dopa-responsive dystonia (DRD) is a rare inherited dystonia that responds very well to levodopa treatment. Genetic mutations of GTP cyclohydrolase I (GCH1) or tyrosine hydroxylase (TH) are disease-causing mutations in DRD. To evaluate the genotype-phenotype correlations and diagnostic values of GCH1 and TH mutation screening in DRD patients, we carried out a combined study of familial and sporadic cases in Chinese Han subjects. We collected 23 subjects, 8 patients with DRD, 5 unaffected family members, and 10 sporadic cases. We used PCR to sequence all exons and splicing sites of the GCH1 and TH genes. Three novel heterozygous GCH1 mutations (Tyr75Cys, Ala98Val, and Ile135Thr) were identified in three DRD pedigrees. We failed to identify any GCH1 or TH mutation in two affected sisters. Three symptom-free male GCH1 mutation carriers were found in two DRD pedigrees. For those DRD siblings that shared the same GCH1 mutation, symptoms and age of onset varied. In 10 sporadic cases, only two heterozygous TH mutations (Ser19Cys and Gly397Arg) were found in two subjects with unknown pathogenicity. No GCH1 and TH mutation was found in 40 unrelated normal Han Chinese controls. GCH1 mutation is the main etiology of familial DRD. Three novel GCH1 mutations were identified in this study. Genetic heterogeneity and incomplete penetrance were quite common in DRD patients, especially in sporadic cases. Genetic screening may help establish the diagnosis of DRD; however, a negative GCH1 and TH mutation test would not exclude the diagnosis.


SpxA1 involved in hydrogen peroxide production, stress tolerance and endocarditis virulence in Streptococcus sanguinis.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2012‎

Streptococcus sanguinis is one of the most common agents of infective endocarditis. Spx proteins are a group of global regulators that negatively or positively control global transcription initiation. In this study, we characterized the spxA1 gene in S. sanguinis SK36. The spxA1 null mutant displayed opaque colony morphology, reduced hydrogen peroxide (H(2)O(2)) production, and reduced antagonistic activity against Streptococcus mutans UA159 relative to the wild type strain. The ΔspxA1 mutant also demonstrated decreased tolerance to high temperature, acidic and oxidative stresses. Further analysis revealed that ΔspxA1 also exhibited a ∼5-fold reduction in competitiveness in an animal model of endocarditis. Microarray studies indicated that expression of several oxidative stress genes was downregulated in the ΔspxA1 mutant. The expression of spxB and nox was significantly decreased in the ΔspxA1 mutant compared with the wild type. These results indicate that spxA1 plays a major role in H(2)O(2) production, stress tolerance and endocarditis virulence in S. sanguinis SK36. The second spx gene, spxA2, was also found in S. sanguinis SK36. The spxA2 null mutant was found to be defective for growth under normal conditions and showed sensitivity to high temperature, acidic and oxidative stresses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: