Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 225 papers

Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells.

  • Jonathan P Robson‎ et al.
  • PloS one‎
  • 2019‎

High morbidity and mortality are common traits of malignant tumours and identification of the cells responsible is a focus of on-going research. Many studies are now reporting the use of antibodies specific to Clusters of Differentiation (CD) cell surface antigens to identify tumour-initiating cell (TIC) populations in neural tumours. Medulloblastoma is one of the most common malignant brain tumours in children and despite a considerable amount of research investigating this tumour, the identity of the TICs, and the means by which such cells can be targeted remain largely unknown. Current prognostication and stratification of medulloblastoma using clinical factors, histology and genetic profiling have classified this tumour into four main subgroups: WNT, Sonic hedgehog (SHH), Group 3 and Group 4. Of these subgroups, SHH remains one of the most studied tumour groups due to the ability to model medulloblastoma formation through targeted deletion of the Shh pathway inhibitor Patched1 (Ptch1). Here we sought to utilise CD antibody expression to identify and isolate TIC populations in Ptch1 deleted medulloblastoma, and determine if these antibodies can help classify the identity of human medulloblastoma subgroups. Using a fluorescence-activated cell sorted (FACS) CD antibody panel, we identified CD24 as a marker of TICs in Ptch1 deleted medulloblastoma. CD24 expression was not correlated with markers of astrocytes or oligodendrocytes, but co-labelled with markers of neural progenitor cells. In conjunction with CD15, proliferating CD24+/CD15+ granule cell precursors (GCPs) were identified as a TIC population in Ptch1 deleted medulloblastoma. On human medulloblastoma, CD24 was found to be highly expressed on Group 3, Group 4 and SHH subgroups compared with the WNT subgroup, which was predominantly positive for CD15, suggesting CD24 is an important marker of non-WNT medulloblastoma initiating cells and a potential therapeutic target in human medulloblastoma. This study reports the use of CD24 and CD15 to isolate a GCP-like TIC population in Ptch1 deleted medulloblastoma, and suggests CD24 expression as a marker to help stratify human WNT tumours from other medulloblastoma subgroups.


Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions.

  • Matthew J Betts‎ et al.
  • Nucleic acids research‎
  • 2015‎

Systematic interrogation of mutation or protein modification data is important to identify sites with functional consequences and to deduce global consequences from large data sets. Mechismo (mechismo.russellab.org) enables simultaneous consideration of thousands of 3D structures and biomolecular interactions to predict rapidly mechanistic consequences for mutations and modifications. As useful functional information often only comes from homologous proteins, we benchmarked the accuracy of predictions as a function of protein/structure sequence similarity, which permits the use of relatively weak sequence similarities with an appropriate confidence measure. For protein-protein, protein-nucleic acid and a subset of protein-chemical interactions, we also developed and benchmarked a measure of whether modifications are likely to enhance or diminish the interactions, which can assist the detection of modifications with specific effects. Analysis of high-throughput sequencing data shows that the approach can identify interesting differences between cancers, and application to proteomics data finds potential mechanistic insights for how post-translational modifications can alter biomolecular interactions.


Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors.

  • Jenny Wegert‎ et al.
  • Cancer cell‎
  • 2015‎

Blastemal histology in chemotherapy-treated pediatric Wilms tumors (nephroblastoma) is associated with adverse prognosis. To uncover the underlying tumor biology and find therapeutic leads for this subgroup, we analyzed 58 blastemal type Wilms tumors by exome and transcriptome sequencing and validated our findings in a large replication cohort. Recurrent mutations included a hotspot mutation (Q177R) in the homeo-domain of SIX1 and SIX2 in tumors with high proliferative potential (18.1% of blastemal cases); mutations in the DROSHA/DGCR8 microprocessor genes (18.2% of blastemal cases); mutations in DICER1 and DIS3L2; and alterations in IGF2, MYCN, and TP53, the latter being strongly associated with dismal outcome. DROSHA and DGCR8 mutations strongly altered miRNA expression patterns in tumors, which was functionally validated in cell lines expressing mutant DROSHA.


BAF complexes facilitate decatenation of DNA by topoisomerase IIα.

  • Emily C Dykhuizen‎ et al.
  • Nature‎
  • 2013‎

Recent exon-sequencing studies of human tumours have revealed that subunits of BAF (mammalian SWI/SNF) complexes are mutated in more than 20% of all human malignancies, but the mechanisms involved in tumour suppression are unclear. BAF chromatin-remodelling complexes are polymorphic assemblies that use energy provided by ATP hydrolysis to regulate transcription through the control of chromatin structure and the placement of Polycomb repressive complex 2 (PRC2) across the genome. Several proteins dedicated to this multisubunit complex, including BRG1 (also known as SMARCA4) and BAF250a (also known as ARID1A), are mutated at frequencies similar to those of recognized tumour suppressors. In particular, the core ATPase BRG1 is mutated in 5-10% of childhood medulloblastomas and more than 15% of Burkitt's lymphomas. Here we show a previously unknown function of BAF complexes in decatenating newly replicated sister chromatids, a requirement for proper chromosome segregation during mitosis. We find that deletion of Brg1 in mouse cells, as well as the expression of BRG1 point mutants identified in human tumours, leads to anaphase bridge formation (in which sister chromatids are linked by catenated strands of DNA) and a G2/M-phase block characteristic of the decatenation checkpoint. Endogenous BAF complexes interact directly with endogenous topoisomerase IIα (TOP2A) through BAF250a and are required for the binding of TOP2A to approximately 12,000 sites across the genome. Our results demonstrate that TOP2A chromatin binding is dependent on the ATPase activity of BRG1, which is compromised in oncogenic BRG1 mutants. These studies indicate that the ability of TOP2A to prevent DNA entanglement at mitosis requires BAF complexes and suggest that this activity contributes to the role of BAF subunits as tumour suppressors.


The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation.

  • Gabriel Leprivier‎ et al.
  • Cell‎
  • 2013‎

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:


Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme.

  • Weijun Feng‎ et al.
  • Nature communications‎
  • 2017‎

Mutations in chromatin modifier genes are frequently associated with neurodevelopmental diseases. We herein demonstrate that the chromodomain helicase DNA-binding protein 7 (Chd7), frequently associated with CHARGE syndrome, is indispensable for normal cerebellar development. Genetic inactivation of Chd7 in cerebellar granule neuron progenitors leads to cerebellar hypoplasia in mice, due to the impairment of granule neuron differentiation, induction of apoptosis and abnormal localization of Purkinje cells, which closely recapitulates known clinical features in the cerebella of CHARGE patients. Combinatory molecular analyses reveal that Chd7 is required for the maintenance of open chromatin and thus activation of genes essential for granule neuron differentiation. We further demonstrate that both Chd7 and Top2b are necessary for the transcription of a set of long neuronal genes in cerebellar granule neurons. Altogether, our comprehensive analyses reveal a mechanism with chromatin remodellers governing brain development via controlling a core transcriptional programme for cell-specific differentiation.


Prognostic relevance of miRNA-155 methylation in anaplastic glioma.

  • Maximilian Georg Schliesser‎ et al.
  • Oncotarget‎
  • 2016‎

The outcome of patients with anaplastic gliomas varies considerably depending on single molecular markers, such as mutations of the isocitrate dehydrogenase (IDH) genes, as well as molecular classifications based on epigenetic or genetic profiles. Remarkably, 98% of the RNA within a cell is not translated into proteins. Of those, especially microRNAs (miRNAs) have been shown not only to have a major influence on physiologic processes but also to be deregulated and prognostic in malignancies.To find novel survival markers and treatment options we performed unbiased DNA methylation screens that revealed 12 putative miRNA promoter regions with differential DNA methylation in anaplastic gliomas. Methylation of these candidate regions was validated in different independent patient cohorts revealing a set of miRNA promoter regions with prognostic relevance across data sets. Of those, miR-155 promoter methylation and miR-155 expression were negatively correlated and especially the methylation showed superior correlation with patient survival compared to established biomarkers.Functional examinations in malignant glioma cells further cemented the relevance of miR-155 for tumor cell viability with transient and stable modifications indicating an onco-miRNA activity. MiR-155 also conferred resistance towards alkylating temozolomide and radiotherapy as consequence of nuclear factor (NF)κB activation.Preconditioning glioma cells with an NFκB inhibitor reduced therapy resistance of miR-155 overexpressing cells. These cells resembled tumors with a low methylation of the miR-155 promoter and thus mir-155 or NFκB inhibition may provide treatment options with a special focus on patients with IDH wild type tumors.


Spatial heterogeneity in medulloblastoma.

  • A Sorana Morrissy‎ et al.
  • Nature genetics‎
  • 2017‎

Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.


Combined BRD4 and CDK9 inhibition as a new therapeutic approach in malignant rhabdoid tumors.

  • Natalia Moreno‎ et al.
  • Oncotarget‎
  • 2017‎

Rhabdoid tumors are caused by the deletion of SMARCB1, whose protein encodes the SMARCB1 subunit of the chromatin remodeling complex SWI/SNF that is involved in global chromatin organization and gene expression control. Simultaneously inhibiting the main players involved in the deregulated transcription machinery is a promising option for preventing exaggerated tumor cell proliferation and survival as it may bypass compensatory mechanisms. In support of this hypothesis, we report efficient impairment of cellular proliferation and strong induction of cell death elicited by inhibition of bromodomain protein BRD4 and transcription kinase CDK9 using small molecular compounds. Combination of both compounds efficiently represses antiapoptotic genes and the oncogene MYC. Our results provide a novel approach for the treatment of RT.


confFuse: High-Confidence Fusion Gene Detection across Tumor Entities.

  • Zhiqin Huang‎ et al.
  • Frontiers in genetics‎
  • 2017‎

Background: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.


Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial.

  • Alan Mackay‎ et al.
  • Cancer cell‎
  • 2018‎

The HERBY trial was a phase II open-label, randomized, multicenter trial evaluating bevacizumab (BEV) in addition to temozolomide/radiotherapy in patients with newly diagnosed non-brainstem high-grade glioma (HGG) between the ages of 3 and 18 years. We carried out comprehensive molecular analysis integrated with pathology, radiology, and immune profiling. In post-hoc subgroup analysis, hypermutator tumors (mismatch repair deficiency and somatic POLE/POLD1 mutations) and those biologically resembling pleomorphic xanthoastrocytoma ([PXA]-like, driven by BRAF_V600E or NF1 mutation) had significantly more CD8+ tumor-infiltrating lymphocytes, and longer survival with the addition of BEV. Histone H3 subgroups (hemispheric G34R/V and midline K27M) had a worse outcome and were immune cold. Future clinical trials will need to take into account the diversity represented by the term "HGG" in the pediatric population.


Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas.

  • Adam M Fontebasso‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.


Nos2 inactivation promotes the development of medulloblastoma in Ptch1(+/-) mice by deregulation of Gap43-dependent granule cell precursor migration.

  • Daniel Haag‎ et al.
  • PLoS genetics‎
  • 2012‎

Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/-) mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/-) mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/-) Nos2(-/-) mice compared to Ptch1(+/-) Nos2(+/+) mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+) Nos2(-/-) mice but not from Ptch1(+/-) Nos2(-/-) mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+) Nos2(-/-) mice but increased in Ptch1(+/-) Nos2(-/) (-) mice relative to Ptch1(+/-) Nos2(+/+) mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/-) mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression.


Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules.

  • Sabine M Görisch‎ et al.
  • Experimental cell research‎
  • 2003‎

In order to investigate the accessibility of the nucleoplasm for macromolecules with different physical properties, we microinjected FITC-conjugated dextrans of different sizes as well as anionic FITC-dextrans and FITC-poly-L-lysine into mammalian cell nuclei. Small dextrans displayed a homogeneous nuclear distribution. With increasing molecular mass (42 to 2500 kDa), FITC-dextrans were progressively excluded from chromatin regions, accumulating in and thereby outlining an apparently extended interchromatin space. Anionic FITC-dextrans (500 kDa) showed complete exclusion from labeled chromatin regions, while the positively charged FITC-poly-L-lysine was to some extent present within the chromatin regions. Moreover, the FITC-poly-L-lysine preferentially localized at the nuclear periphery. We also found a size-dependent exclusion of FITC-dextrans from nucleoli regions, while the FITC-poly-L-lysine accumulated in the nucleoli. Thus, the distinct and restricted nuclear accessibility for macromolecules is dependent on molecule size and electrical charge.


A mammalian microRNA expression atlas based on small RNA library sequencing.

  • Pablo Landgraf‎ et al.
  • Cell‎
  • 2007‎

MicroRNAs (miRNAs) are small noncoding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents that were enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units, and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses.


Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1) in normal and transformed cerebellar cells.

  • Alexander Glassmann‎ et al.
  • BMC developmental biology‎
  • 2007‎

Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens.


Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma.

  • Stefan Pfister‎ et al.
  • Nucleic acids research‎
  • 2007‎

Existing microarray-based approaches for screening of DNA methylation are hampered by a number of shortcomings, such as the introduction of bias by DNA copy-number imbalances in the test genome and negligence of tissue-specific methylation patterns. We developed a method designated array-based profiling of reference-independent methylation status (aPRIMES) that allows the detection of direct methylation status rather than relative methylation. Array-PRIMES is based on the differential restriction and competitive hybridization of methylated and unmethylated DNA by methylation-specific and methylation-sensitive restriction enzymes, respectively. We demonstrate the accuracy of aPRIMES in detecting the methylation status of CpG islands for different states of methylation. Application of aPRIMES to the DNA from desmoplastic medulloblastomas of monozygotic twins showed strikingly similar methylation profiles. Additional analysis of 18 sporadic medulloblastomas revealed an overall correlation between highly methylated tumors and poor clinical outcome and identified ZIC2 as a frequently methylated gene in pediatric medulloblastoma.


Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features.

  • Marcel Kool‎ et al.
  • PloS one‎
  • 2008‎

Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms.


Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in Em-TCL1 mice.

  • Bola S Hanna‎ et al.
  • Haematologica‎
  • 2021‎

Ibrutinib is a bruton's tyrosine kinase (BTK) inhibitor approved for the treatment of multiple B-cell malignancies, including chronic lymphocytic leukemia (CLL). In addition to blocking B-cell receptor signaling and chemokine receptor-mediated pathways in CLL cells, that are known drivers of disease, ibrutinib also affects the microenvironment in CLL via targeting BTK in myeloid cells and IL-2-inducible T-cell kinase (ITK) in T-cells. These non-BTK effects were suggested to contribute to the success of ibrutinib in CLL. By using the Eµ-TCL1 adoptive transfer mouse model of CLL, we observed that ibrutinib effectively controls leukemia development, but also results in significantly lower numbers of CD8+ effector T-cells, with lower expression of activation markers, as well as impaired proliferation and effector function. Using CD8+ T-cells from a T-cell receptor (TCR) reporter mouse, we verified that this is due to a direct effect of ibrutinib on TCR activity, and demonstrate that co-stimulation via CD28 overcomes these effects. Most interestingly, combination of ibrutinib with blocking antibodies targeting PD-1/PD-L1 axis in vivo improved CD8+ T-cell effector function and control of CLL. In sum, these data emphasize the strong immunomodulatory effects of ibrutinib and the therapeutic potential of its combination with immune checkpoint blockade in CLL.


High impact of miRNA-4521 on FOXM1 expression in medulloblastoma.

  • Daniel Senfter‎ et al.
  • Cell death & disease‎
  • 2019‎

Medulloblastoma, an embryonal tumor of the cerebellum/fourth ventricle, is one of the most frequent malignant brain tumors in children. Although genetic variants are increasingly used in treatment stratification, survival of high-risk patients, characterized by leptomeningeal dissemination, TP53 mutation or MYC amplification, is still poor. FOXM1, a proliferation-specific oncogenic transcription factor, is deregulated in various solid tumors, including medulloblastoma, and triggers cellular proliferation, migration and genomic instability. In tissue samples obtained from medulloblastoma patients, the significant upregulation of FOXM1 was associated with a loss of its putative regulating microRNA, miR-4521. To understand the underlying mechanism, we investigated the effect of miR-4521 on the expression of the transcription factor FOXM1 in medulloblastoma cell lines. Transfection of this microRNA reduced proliferation and invasion of several medulloblastoma cell lines and induced programmed cell death through activation of caspase 3/7. Further, downstream targets of FOXM1 such as PLK1 and cyclin B1 were significantly reduced thus affecting the cell cycle progression in medulloblastoma cell lines. In conclusion, a restoration of miRNA-4521 may selectively suppress the pathophysiological effect of aberrant FOXM1 expression and serve as a targeted approach for medulloblastoma therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: