Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,051 papers

Structural basis for the Trembler-J phenotype of Charcot-Marie-Tooth disease.

  • Masayoshi Sakakura‎ et al.
  • Structure (London, England : 1993)‎
  • 2011‎

Mutations in peripheral myelin protein 22 (PMP22) can result in the common peripheral neuropathy Charcot-Marie-Tooth disease (CMTD). The Leu16Pro mutation in PMP22 results in misassembly of the protein, which causes the Trembler-J (TrJ) disease phenotype. Here we elucidate the structural defects present in a partially folded state of TrJ PMP22 that are decisive in promoting CMTD-causing misfolding. In this state, transmembrane helices 2-4 (TM2-4) form a molten globular bundle, while transmembrane helix 1 (TM1) is dissociated from this bundle. The TrJ mutation was seen to profoundly disrupt the TM1 helix, resulting in increased backbone dynamics and changes in the tertiary interactions of TM1 with the PMP22 TM2-4 core in the folded state. Consequently, TM1 undergoes enhanced dissociation from the other transmembrane segments in TrJ PMP22, becoming available for recognition and sequestration by protein-folding quality control, which leads to loss of function and toxic accumulation of aggregates that result in CMTD.


Genome sequence of the model medicinal mushroom Ganoderma lucidum.

  • Shilin Chen‎ et al.
  • Nature communications‎
  • 2012‎

Ganoderma lucidum is a widely used medicinal macrofungus in traditional Chinese medicine that creates a diverse set of bioactive compounds. Here we report its 43.3-Mb genome, encoding 16,113 predicted genes, obtained using next-generation sequencing and optical mapping approaches. The sequence analysis reveals an impressive array of genes encoding cytochrome P450s (CYPs), transporters and regulatory proteins that cooperate in secondary metabolism. The genome also encodes one of the richest sets of wood degradation enzymes among all of the sequenced basidiomycetes. In all, 24 physical CYP gene clusters are identified. Moreover, 78 CYP genes are coexpressed with lanosterol synthase, and 16 of these show high similarity to fungal CYPs that specifically hydroxylate testosterone, suggesting their possible roles in triterpenoid biosynthesis. The elucidation of the G. lucidum genome makes this organism a potential model system for the study of secondary metabolic pathways and their regulation in medicinal fungi.


The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes.

  • Minna-Liisa Änkö‎ et al.
  • Genome biology‎
  • 2012‎

The SR proteins comprise a family of essential, structurally related RNA binding proteins. The complexity of their RNA targets and specificity of RNA recognition in vivo is not well understood. Here we use iCLIP to globally analyze and compare the RNA binding properties of two SR proteins, SRSF3 and SRSF4, in murine cells.


Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers.

  • Jen-Tsan Chi‎ et al.
  • PLoS medicine‎
  • 2006‎

Inadequate oxygen (hypoxia) triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF), plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases.


Patterns of altered cortical perfusion and diminished subcortical integrity in posttraumatic stress disorder: an MRI study.

  • Norbert Schuff‎ et al.
  • NeuroImage‎
  • 2011‎

Posttraumatic stress disorder (PTSD) accounts for a substantial proportion of casualties among surviving soldiers of the Iraq and Afghanistan wars. Currently, the assessment of PTSD is based exclusively on symptoms, making it difficult to obtain an accurate diagnosis. This study aimed to find potential imaging markers for PTSD using structural, perfusion, and diffusion magnetic resonance imaging (MRI) together. Seventeen male veterans with PTSD (45 ± 14 years old) and 15 age-matched male veterans without PTSD had measurements of regional cerebral blood flow (rCBF) using arterial spin labeling (ASL) perfusion MRI. A slightly larger group had also measurements of white matter integrity using diffusion tensor imaging (DTI) with computations of regional fractional anisotropy (FA). The same subjects also had structural MRI of the hippocampal subfields as reported recently (W. Zhen et al. Arch Gen Psych 2010;67(3):296-303). On ASL-MRI, subjects with PTSD had increased rCBF in primarily right parietal and superior temporal cortices. On DTI, subjects with PTSD had FA reduction in white matter regions of the prefrontal lobe, including areas near the anterior cingulate cortex and prefrontal cortex as well as in the posterior angular gyrus. In conclusion, PTSD is associated with a systematic pattern of physiological and structural abnormalities in predominantly frontal lobe and limbic brain regions. Structural, perfusion, and diffusion MRI together may provide a signature for a PTSD marker.


Comparing the retention mechanisms of tandem duplicates and retrogenes in human and mouse genomes.

  • Zhen Wang‎ et al.
  • Genetics, selection, evolution : GSE‎
  • 2010‎

Multiple models have been proposed to interpret the retention of duplicated genes. In this study, we attempted to compare whether the duplicates arising from tandem duplications and retropositions are retained by the same mechanisms in human and mouse genomes.


1,3-Dichloro-2-propanol evokes inflammation and apoptosis in BV-2 microglia via MAPKs and NF-κB signaling pathways mediated by reactive oxygen species.

  • Chunxia Xiao‎ et al.
  • Toxicology letters‎
  • 2018‎

1,3-dichloro-2-propanol (1,3-DCP) is a widely concerned food processing contaminant which has been investigated for decades. While the neurotoxicity of 1,3-DCP and related mechanisms are still elusive. Herein, the effect of 1,3-DCP on neurotoxicity was investigated using BV-2 microglia cells. 1,3-DCP significantly decreased cell viability from 78.6% to 59.2% at doses between 2 and 20 mM. AO/EB and JC-1 staining indicated that 1,3-DCP induced apoptosis by means of the decrease of mitochondrial membrane potential. Meanwhile, western blot showed that 1,3-DCP stimulated inflammation of BV-2 cells through phosphorylation of MAPKs and activation of NF-κB pathways mediated by reactive oxygen species (ROS). Furthermore, the degree of inflammation and apoptosis has eased through MAPKs and NF-κB pathways with cells pretreated by N-acetylcysteine (NAC). Overall, these results presented here suggested that 1,3-DCP has neurotoxic effect on BV-2 microglia mainly via MAPKs and NF-κB pathways mediated by ROS.


SOX9-PDK1 axis is essential for glioma stem cell self-renewal and temozolomide resistance.

  • Zhen Wang‎ et al.
  • Oncotarget‎
  • 2018‎

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with limited therapeutic options. Glioma stem cell (GSC) is thought to be greatly responsible for glioma tumor progression and drug resistance. But the molecular mechanisms of GSC deriving recurrence and drug resistance are still unclear. SOX9 (sex-determining region Y (SRY)-box9 protein), a transcription factor expressed in most solid tumors, is reported as a key regulator involved in maintaining cancer hallmarks including the GSCs state. Previously, we have observed that silencing of SOX9 suppressed glioma cells proliferation both in vitro and in vivo. Here, we found that SOX9 was essential for GSC self-renewal. Silencing of SOX9 down-regulated a broad range of stem cell markers and inhibited glioma cell colony and sphere formation. We identified pyruvate dehydrogenase kinase 1 (PDK1) as a target gene of SOX9 using microarray analyses. PDK1 inactivation greatly inhibited glioma cell colony and sphere formation and sensitized glioma spheres to temozolomide (TMZ) toxicity. In addition, SOX9-shRNA and PDK1 inhibitor could greatly sensitize GSC to TMZ in vivo. Taken together, our data reveals that SOX9-PDK1 axis is a key regulator of GSC self-renewal and GSC temozolomide resistance. These findings may provide help for future human GBM therapy.


GLYX-13 Ameliorates Schizophrenia-Like Phenotype Induced by MK-801 in Mice: Role of Hippocampal NR2B and DISC1.

  • Dongsheng Zhou‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

Background: Evidence supports that the hypofunction of N-methyl-D-aspartate receptor (NMDAR) and downregulation of disrupted-in-schizophrenia 1 (DISC1) contribute to the pathophysiology of schizophrenia. N-Methyl D-aspartate receptor subtype 2B (NR2B)-containing NMDAR are associated with cognitive dysfunction in schizophrenia. GLYX-13 is an NMDAR glycine-site functional partial agonist and cognitive enhancer that does not induce psychotomimetic side effects. However, it remains unclear whether NR2B plays a critical role in the GLYX-13-induced alleviation of schizophrenia-like behaviors in mice. Methods: The effect of GLYX-13 was tested by observing changes in locomotor activity, novel object recognition ability, and prepulse inhibition (PPI) induced by dizocilpine (known as MK-801) in mice. Lentivirus-mediated NR2B knockdown in the hippocampus was assessed to confirm the role of NR2B in GLYX-13 pathophysiology, using Western blots and immunohistochemistry. Results: The systemic administration of GLYX-13 (0.5 and 1 mg/kg, i.p.) ameliorates MK-801 (0.5 mg/kg, i.p.)-induced hyperlocomotion, deficits in memory, and PPI in mice. Additionally, GLYX-13 normalized the MK-801-induced alterations in signaling molecules, including NR2B and DISC1 in the hippocampus. Furthermore, we found that NR2B knockdown produced memory and PPI deficits without any changes in locomotor activity. Notably, DISC1 levels significantly decreased by NR2B knockdown. However, the effective dose of GLYX-13 did not alleviate the memory and PPI dysfunctions or downregulation of DISC1 induced by NR2B knockdown. Conclusion: Our results suggest GLYX-13 as a candidate for schizophrenia treatment, and NR2B and DISC1 in the hippocampus may account for the molecular mechanisms of GLYX-13.


Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology.

  • Weijie Xie‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Panax notoginseng (Burk) F. H. Chen, as traditional Chinese medicine, has a long history of high clinical value, such as anti-inflammatory, anti-oxidation, inhibition of platelet aggregation, regulation of blood glucose and blood pressure, inhibition of neuronal apoptosis, and neuronal protection, and its main ingredients are Panax notoginseng saponins (PNS). Currently, Panax notoginseng (Burk) F. H. Chen may improve mental function, have anti-insomnia and anti-depression effects, alleviate anxiety, and decrease neural network excitation. However, the underlying effects and the mechanisms of Panax notoginseng (Burk) F. H. Chen and its containing chemical constituents (PNS) on these depression-related or anxiety-related diseases has not been completely established. This review summarized the antidepressant or anxiolytic effects and mechanisms of PNS and analyzed network targets of antidepressant or anxiolytic actions with network pharmacology tools to provide directions and references for further pharmacological studies and new ideas for clinical treatment of nervous system diseases and drug studies and development. The review showed PNS and its components may exert these effects through regulating neurotransmitter mechanism (5-HT, DA, NE), modulation of the gamma-amino butyric acid (GABA) neurotransmission, glutamatergic system, hypo-thalamus-pituitary-adrenal (HPA) axis, brain-derived neurotrophic factor (BDNF), and its intracellular signaling pathways in the central nervous system; and produce neuronal protection by anti-inflammatory, anti-oxidation, or inhibition of neuronal apoptosis, or platelet aggregation and its intracellular signaling pathways. Network target analysis indicated PNS and its components also may have anti-inflammatory and anti-apoptotic effects, which leads to the preservation of brain nerves, and regulate the activity and secretion of nerve cells, exerting anti-depression and anxiolytic effects, which may provide new directions for further in-depth researches of related mechanisms.


Does the Fuhrman or World Health Organization/International Society of Urological Pathology Grading System Apply to the Xp11.2 Translocation Renal Cell Carcinoma?: A 10-Year Single-Center Study.

  • Ning Liu‎ et al.
  • The American journal of pathology‎
  • 2018‎

The Fuhrman and World Health Organization/International Society of Urological Pathology (WHO/ISUP) grading systems are widely used to predict survival for patients with conventional renal cell carcinoma. To determine the validity of nuclear grading systems (both the Fuhrman and the WHO/ISUP) and the individual components of the Fuhrman grading system in predicting the prognosis of Xp11.2 translocation renal cell carcinoma (Xp11.2 tRCC), we identified and followed up 47 patients with Xp11.2 tRCC in our center from January 2007 to June 2017. The Fuhrman and WHO/ISUP grading was reassigned by two pathologists. Nuclear size and shape were determined for each case based on the greatest degree of nuclear pleomorphism using image analysis software. Univariate and multivariate analyses were performed to evaluate the capacity of the grading systems and nuclear parameters to predict overall survival and progression-free survival. On univariate Cox regression analysis, the parameters of nuclear size were associated significantly with overall survival and progression-free survival, whereas the grading systems and the parameters of nuclear shape failed to reach a significant correlation. On multivariate analysis, however, none of the parameters was associated independently with survival. Our findings indicate that neither the Fuhrman nor the WHO/ISUP grading system is applicable to Xp11.2 tRCC. The assessment of nuclear size instead may be novel outcome predictors for patients with Xp11.2 tRCC.


Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release.

  • Kaili Wang‎ et al.
  • Nanoscale research letters‎
  • 2018‎

In this work, novel mitochondrial and CD44 receptor dual-targeting redox-sensitive multifunctional nanoparticles (micelles) based on oligomeric hyaluronic acid (oHA) were proposed. The amphiphilic nanocarrier was prepared by (5-carboxypentyl)triphenylphosphonium bromide (TPP), oligomeric hyaluronic acid (oHA), disulfide bond, and curcumin (Cur), named as TPP-oHA-S-S-Cur. The TPP targeted the mitochondria, the antitumor drug Cur served as a hydrophobic core, the CD44 receptor targeting oHA worked as a hydrophilic shell, and the disulfide bond acted as a connecting arm. The chemical structure of TPP-oHA-S-S-Cur was characterized by 1HNMR technology. Cur was loaded into the TPP-oHA-S-S-Cur micelles by self-assembly. Some properties, including the preparation of micelles, morphology, redox sensitivity, and mitochondrial targeting, were studied. The results showed that TPP-oHA-S-S-Cur micelles had a mean diameter of 122.4 ± 23.4 nm, zeta potential - 26.55 ± 4.99 mV. In vitro release study and cellular uptake test showed that TPP-oHA-S-S-Cur micelles had redox sensibility, dual targeting to mitochondrial and CD44 receptor. This work provided a promising smart multifunctional nanocarrier platform to enhance the solubility, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.


The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency.

  • Alessandro Bertero‎ et al.
  • Nature‎
  • 2018‎

The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.


CD103+ Cell Growth Factor Flt3L Enhances the Efficacy of Immune Checkpoint Blockades in Murine Glioblastoma Model.

  • Xiaolin Miao‎ et al.
  • Oncology research‎
  • 2018‎

Glioblastoma is a lethal disease featuring a high proliferation of tumor cells, excessive angiogenesis, and heavy drug resistance. The overall survival of glioblastoma patients has been dismal, even with an intensive standard of care. Recent advances in immune checkpoint blockades are changing the treatment of cancers. However, the efficacy of immune checkpoint blockades in glioblastoma is still unclear. Here we investigated the roles of CD103+ cells in regulating the effect of immune checkpoint blockades in glioblastoma mouse models. Our findings indicated that the murine glioblastoma model was not sensitive to immune checkpoint blockades. Flt3L, a growth factor for CD103+ cells, could significantly increase the number of CD103+ dendritic cells in the murine glioblastoma model and, thus, sensitize murine glioblastoma to immune checkpoint blockades. Downstream analysis indicated that the Flt3L and immune checkpoint blockade combination increased the number of tumor-infiltrating CD8+ cells, decreased immune checkpoint expression, and therefore enhanced the antitumor immune response in the murine glioblastoma model. These findings suggested that Flt3L could enhance the efficacy of immune checkpoint blockades in glioblastoma via expanding CD103+ dendritic cells and downstream antitumor immune response.


Clinical effect of preoperative high-dose atorvastatin against no-reflow after PCI.

  • Wenbo Liu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

The aim of the present study was to evaluate the use of preoperative high-dose atorvastatin to prevent the no-reflow phenomenon after percutaneous coronary intervention (PCI). A total of 138 patients with ST-segment elevation myocardial infarction, admitted from March 2014 to January 2015, were enrolled and randomly divided into 3 groups of 46 individuals each. The groups included a control group in which patients were not treated with atorvastatin before PCI; a conventional-dose atorvastatin treatment group in which patients received a single dose of 20 mg at bedtime one day prior to PCI; and a high-dose atorvastatin treatment group in which patients were treated with 40 mg divided in two doses the day before PCI. The treatment effects were assessed by re-examining the echocardiography, high-sensitivity C-reactive protein and brain natriuretic peptide (BNP) levels after the PCI. The follow-up examinations included determinations of ultrasound imaging indicators and the contact with patients was maintained for a whole year. The CTFC (frame), pro-BNP, CK-MB peak and WMSI levels of the patients in the high-dose treatment group were significantly lower than those in the conventional dose or the control group. Trombolysis in myocardial infarction ≤2 and myocardial blush grade ≤1 levels were significantly lower than those in the conventional dose group (P=0.01) or those in the control group (P=0.01), although the echocardiographic indicators of the three groups were not significantly different (P<0.05). Nevertheless, it was found that there were significantly fewer adverse cardiovascular events in the high-dose group (P<0.05 in both cases). During the follow-up period, thromboembolism and restenosis were most infrequent in the high-dose atorvastatin group. Based on our findings the oral administration of high-dose atorvastatin before bedtime, one day before the procedure, can effectively prevent no-reflow cases, reduce adverse events and improve the long-term prognosis for acute coronary syndrome patients after PCI.


Chondroprotective Effects of Ginsenoside Rg1 in  Human Osteoarthritis Chondrocytes and a Rat Model  of Anterior Cruciate Ligament Transection.

  • Wendan Cheng‎ et al.
  • Nutrients‎
  • 2017‎

This study aimed to assess whether Ginsenoside Rg1 (Rg1) inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA). Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-13 and cyclooxygenase-2 (COX-2) were determined in vitro by quantitative real-time-polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE2) amounts in the culture medium were determined by enzyme-linked immunosorbent assay (ELISA). For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT). Four weeks after ACLT, Rg1 (30 or 60 mg/kg) or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL)-1β-induced chondrocyte gene and protein expressions of MMP-13, COX-2 and PGE2, and prevented type II collagen and aggrecan degradation, in a dose-dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP-13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA.


Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals.

  • Xiao-Li Zhao‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Aesculin (AES), a coumarin compound derived from Aesculus hippocasanum L, is reported to exert protective role against inflammatory diseases, gastric disease and cancer. However, direct effect of AES in bone metabolism is deficient. In this study, we examined the effects of AES on osteoclast (OC) differentiation in receptor activator of NF-κB ligand (RANKL)-induced RAW264.7 cells. AES inhibits the OC differentiation in both dose- and time-dependent manner within non-toxic concentrations, as analyzed by Tartrate Resistant Acid Phosphatase (TRAP) staining. The actin ring formation manifesting OC function is also decreased by AES. Moreover, expressions of osteoclastogenesis related genes Trap, Atp6v0d2, Cathepsin K and Mmp-9 are decreased upon AES treatment. Mechanistically, AES attenuates the activation of MAPKs and NF-κB activity upon RANKL induction, thus leading to the reduction of Nfatc1 mRNA expression. Moreover, AES inhibits Rank expression, and RANK overexpression markedly decreases AES's effect on OC differentiation and NF-κB activity. Consistently, AES protects against bone mass loss in the ovariectomized and dexamethasone treated rat osteoporosis model. Taken together, our data demonstrate that AES can modulate bone metabolism by suppressing osteoclastogenesis and related transduction signals. AES therefore could be a promising agent for the treatment of osteoporosis.


Combined treatment with artesunate and bromocriptine has synergistic anticancer effects in pituitary adenoma cell lines.

  • Xin Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Prolactinomas are the most prevalent functional pituitary adenomas. The preferred treatments for prolactinomas are dopamine agonists (DAs) such as bromocriptine (BRC), but DAs still have the challenges of tumor recurrence and drug resistance. This study demonstrates that the synergy of function and mechanism between artesunate (ART) and BRC inhibits prolactinoma cell growth in vitro. We found that low-dose ART combined with BRC synergistically inhibited the growth of GH3 and MMQ cell lines, caused cell death, attenuated cell migration and invasion, and suppressed the expression of extracellular prolactin. The induction of apoptosis after co-treatment was confirmed by immunofluorescent staining, assessment of caspase-3 protein expression, and flow cytometry. Expression of miR-200c, a carcinogenic factor in pituitary adenoma, was reduced following co-treatment with ART and BRC. This was accompanied by increased expression of the antitumor factor Pten. Transfection experiments with miR-200c analogs and inhibitors confirmed that miR-200c expression was inversely associated with Pten expression. We suggest that ART and BRC used in combination exert synergistic apoptotic and antitumor effects by suppressing miR-200c and stimulating Pten expression.


Transcript-specific characteristics determine the contribution of endo- and exonucleolytic decay pathways during the degradation of nonsense-mediated decay substrates.

  • Franziska Ottens‎ et al.
  • RNA (New York, N.Y.)‎
  • 2017‎

Nonsense-mediated mRNA decay (NMD) controls gene expression by eliminating mRNAs with premature or aberrant translation termination. Degradation of NMD substrates is initiated by the central NMD factor UPF1, which recruits the endonuclease SMG6 and the deadenylation-promoting SMG5/7 complex. The extent to which SMG5/7 and SMG6 contribute to the degradation of individual substrates and their regulation by UPF1 remains elusive. Here we map transcriptome-wide sites of SMG6-mediated endocleavage via 3' fragment capture and degradome sequencing. This reveals that endogenous transcripts can have NMD-eliciting features at various positions, including upstream open reading frames (uORFs), premature termination codons (PTCs), and long 3' UTRs. We find that NMD substrates with PTCs undergo constitutive SMG6-dependent endocleavage, rather than SMG7-dependent exonucleolytic decay. In contrast, the turnover of NMD substrates containing uORFs and long 3' UTRs involves both SMG6- and SMG7-dependent endo- and exonucleolytic decay, respectively. This suggests that the extent to which SMG6 and SMG7 degrade NMD substrates is determined by the mRNA architecture.


Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury.

  • Weiwei Lin‎ et al.
  • Scientific reports‎
  • 2015‎

Autophagy is essentially a metabolic process, but its in vivo role in nuclear radioprotection remains unexplored. We observed that ex vivo autophagy activation reversed the proliferation inhibition, apoptosis, and DNA damage in irradiated hematopoietic cells. In vivo autophagy activation improved bone marrow cellularity following nuclear radiation exposure. In contrast, defective autophagy in the hematopoietic conditional mouse model worsened the hematopoietic injury, reactive oxygen species (ROS) accumulation and DNA damage caused by nuclear radiation exposure. Strikingly, in vivo defective autophagy caused an absence or reduction in regulatory proteins critical to both homologous recombination (HR) and non-homologous end joining (NHEJ) DNA damage repair pathways, as well as a failure to induce these proteins in response to nuclear radiation. In contrast, in vivo autophagy activation increased most of these proteins in hematopoietic cells. DNA damage assays confirmed the role of in vivo autophagy in the resolution of double-stranded DNA breaks in total bone marrow cells as well as bone marrow stem and progenitor cells upon whole body irradiation. Hence, autophagy protects the hematopoietic system against nuclear radiation injury by conferring and intensifying the HR and NHEJ DNA damage repair pathways and by removing ROS and inhibiting apoptosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: