Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 71 papers out of 71 papers

Combination of Serological, Antigen Detection, and DNA Data for Plasmodium falciparum Provides Robust Geospatial Estimates for Malaria Transmission in Haiti.

  • Adan Oviedo‎ et al.
  • Scientific reports‎
  • 2020‎

Microscopy is the gold standard for malaria epidemiology, but laboratory and point-of-care (POC) tests detecting parasite antigen, DNA, and human antibodies against malaria have expanded this capacity. The island nation of Haiti is endemic for Plasmodium falciparum (Pf) malaria, though at a low national prevalence and heterogenous geospatial distribution. In 2015 and 2016, serosurveys were performed of children (ages 6-7 years) sampled in schools in Saut d'Eau commune (n = 1,230) and Grand Anse department (n = 1,664) of Haiti. Children received malaria antigen rapid diagnostic test and provided a filter paper blood sample for further laboratory analysis of the Pf histidine-rich protein 2 (HRP2) antigen, Pf DNA, and anti-Pf IgG antibodies. Prevalence of Pf infection ranged from 0.0-16.7% in 53 Saut d'Eau schools, and 0.0-23.8% in 56 Grand Anse schools. Anti-Pf antibody carriage exceeded 80% of students in some schools from both study sites. Geospatial prediction ellipses were created to indicate clustering of positive tests within the survey areas and overlay of all prediction ellipses for the different types of data revealed regions with high likelihood of active and ongoing Pf malaria transmission. The geospatial utilization of different types of Pf data can provide high confidence for spatial epidemiology of the parasite.


Deletion of Plasmodium falciparum Histidine-Rich Protein 2 (pfhrp2) and Histidine-Rich Protein 3 (pfhrp3) Genes in Colombian Parasites.

  • Claribel Murillo Solano‎ et al.
  • PloS one‎
  • 2015‎

A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed.


Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010-2012.

  • G Christian Baldeviano‎ et al.
  • Emerging infectious diseases‎
  • 2015‎

During 2010-2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998-2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events.


Genetic variation and recurrent parasitaemia in Peruvian Plasmodium vivax populations.

  • Andrea M McCollum‎ et al.
  • Malaria journal‎
  • 2014‎

Plasmodium vivax is a predominant species of malaria in parts of South America and there is increasing resistance to drugs to treat infections by P. vivax. The existence of latent hypnozoites further complicates the ability to classify recurrent infections as treatment failures due to relapse, recrudescence of hyponozoites or re-infections. Antigen loci are putatively under natural selection and may not be an optimal molecular marker to define parasite haplotypes in paired samples. Putatively neutral microsatellite loci, however, offer an assessment of neutral haplotypes. The objective here was to assess the utility of neutral microsatellite loci to reconcile cases of recurrent parasitaemia in Amazonian P. vivax populations in Peru.


Genetic Characterisation of Plasmodium falciparum Isolates with Deletion of the pfhrp2 and/or pfhrp3 Genes in Colombia: The Amazon Region, a Challenge for Malaria Diagnosis and Control.

  • Erika Jimena Dorado‎ et al.
  • PloS one‎
  • 2016‎

Most Plasmodium falciparum-detecting rapid diagnostic tests (RDTs) target histidine-rich protein 2 (PfHRP2). However, P. falciparum isolates with deletion of the pfhrp2 gene and its homolog gene, pfhrp3, have been detected. We carried out an extensive investigation on 365 P. falciparum dried blood samples collected from seven P. falciparum endemic sites in Colombia between 2003 and 2012 to genetically characterise and geographically map pfhrp2- and/or pfhrp3-negative P. falciparum parasites in the country. We found a high proportion of pfhrp2-negative parasites only in Amazonas (15/39; 38.5%), and these parasites were also pfhrp3-negative. These parasites were collected between 2008 and 2009 in Amazonas, while pfhrp3-negative parasites (157/365, 43%) were found in all the sites and from each of the sample collection years evaluated (2003 to 2012). We also found that all pfhrp2- and/or pfhrp3-negative parasites were also negative for one or both flanking genes. Six sub-population clusters were established with 93.3% (14/15) of the pfhrp2-negative parasites grouped in the same cluster and sharing the same haplotype. This haplotype corresponded with the genetic lineage BV1, a multidrug resistant strain that caused two outbreaks reported in Peru between 2010 and 2013. We found this BV1 lineage in the Colombian Amazon as early as 2006. Two new clonal lineages were identified in these parasites from Colombia: the genetic lineages EV1 and F. PfHRP2 sequence analysis revealed high genetic diversity at the amino acid level, with 17 unique sequences identified among 53 PfHRP2 sequences analysed. The use of PfHRP2-based RDTs is not recommended in Amazonas because of the high proportion of parasites with pfhrp2 deletion (38.5%), and implementation of new strategies for malaria diagnosis and control in Amazonas must be prioritised. Moreover, studies to monitor and genetically characterise pfhrp2-negative P. falciparum parasites in the Americas are warranted, given the extensive human migration occurring in the region.


Still Searching for a Suitable Molecular Test to Detect Hidden Plasmodium Infection: A Proposal for Blood Donor Screening in Brazil.

  • Giselle Fernandes Maciel de Castro Lima‎ et al.
  • PloS one‎
  • 2016‎

Efforts have been made to establish sensitive diagnostic tools for malaria screening in blood banks in order to detect malaria asymptomatic carriers. Microscopy, the malaria reference test in Brazil, is time consuming and its sensitivity depends on microscopist experience. Although molecular tools are available, some aspects need to be considered for large-scale screening: accuracy and robustness for detecting low parasitemia, affordability for application to large number of samples and flexibility to perform on individual or pooled samples.


Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites.

  • Naomi W Lucchi‎ et al.
  • PloS one‎
  • 2016‎

Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1-8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.


One-step PCR: A novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparum.

  • Sophie Jones‎ et al.
  • PloS one‎
  • 2020‎

Histidine-rich protein 2 (HRP2) detecting rapid diagnostic tests (RDTs) have played an important role in enabling prompt malaria diagnosis in remote locations. However, emergence of pfhrp2 deleted parasites is threatening the efficacy of RDTs, and the World Health Organization (WHO) has highlighted surveillance of these deletions as a priority. Nested PCR is used to confirm pfhrp2 deletion but is costly and laborious. Due to spurious amplification of paralogue pfhrp3, the identity of nested exon 1 PCR product must be confirmed by sequencing. Here we describe a new one-step PCR method for detection of pfhrp2. To determine sensitivity and specificity, all PCRs were performed in triplicate. Using photo-induced electron transfer (PET) PCR detecting 18srRNA as true positive, one-step had comparable sensitivity of 95.0% (88.7-98.4%) to nested exon 1, 99.0% (94.6-99.9%) and nested exon 2, 98.0% (93.0-99.8%), and comparable specificity 93.8% (69.8-99.8%) to nested exon 1 100.0% (79.4-100.0%) and nested exon 2, 100.0% (74.4-100.0%). Sequencing revealed that one step PCR does not amplify pfhrp3. Logistic regression models applied to measure the 95% level of detection of the one-step PCR in clinical isolates provided estimates of 133p/μL (95% confidence interval (CI): 3-793p/μL) for whole blood (WB) samples and 385p/μL (95% CI: 31-2133 p/μL) for dried blood spots (DBSs). When considering protocol attributes, the one-step PCR is less expensive, faster and more suitable for high throughput. In summary, we have developed a more accurate PCR method that may be ideal for the application of the WHO protocol for investigating pfhrp2 deletions in symptomatic individuals presenting to health care facilities.


Multiplex malaria antigen detection by bead-based assay and molecular confirmation by PCR shows no evidence of Pfhrp2 and Pfhrp3 deletion in Haiti.

  • Camelia Herman‎ et al.
  • Malaria journal‎
  • 2019‎

The Plasmodium falciparum parasite is the only human malaria that produces the histidine-rich protein 2 and 3 (HRP2/3) antigens. Currently, HRP2/3 are widely used in malaria rapid diagnostic tests (RDTs), but several global reports have recently emerged showing genetic deletion of one or both of these antigens in parasites. Deletion of these antigens could pose a major concern for P. falciparum diagnosis in Haiti which currently uses RDTs based solely on the detection of the HRP2/3 antigens.


Genetic analysis reveals unique characteristics of Plasmodium falciparum parasite populations in Haiti.

  • Rachel F Daniels‎ et al.
  • Malaria journal‎
  • 2020‎

With increasing interest in eliminating malaria from the Caribbean region, Haiti is one of the two countries on the island of Hispaniola with continued malaria transmission. While the Haitian population remains at risk for malaria, there are a limited number of cases annually, making conventional epidemiological measures such as case incidence and prevalence of potentially limited value for fine-scale resolution of transmission patterns and trends. In this context, genetic signatures may be useful for the identification and characterization of the Plasmodium falciparum parasite population in order to identify foci of transmission, detect outbreaks, and track parasite movement to potentially inform malaria control and elimination strategies.


Evaluation of various distance computation methods for construction of haplotype-based phylogenies from large MLST datasets.

  • David Jacobson‎ et al.
  • Molecular phylogenetics and evolution‎
  • 2022‎

Multi-locus sequence typing (MLST) is widely used to investigate genetic relationships among eukaryotic taxa, including parasitic pathogens. MLST analysis workflows typically involve construction of alignment-based phylogenetic trees - i.e., where tree structures are computed from nucleotide differences observed in a multiple sequence alignment (MSA). Notably, alignment-based phylogenetic methods require that all isolates/taxa are represented by a single sequence. When multiple loci are sequenced these sequences may be concatenated to produce one tree that includes information from all loci. Alignment-based phylogenetic techniques are robust and widely used yet possess some shortcomings, including how heterozygous sites are handled, intolerance for missing data (i.e., partial genotypes), and differences in the way insertions-deletions (indels) are scored/treated during tree construction. In certain contexts, 'haplotype-based' methods may represent a viable alternative to alignment-based techniques, as they do not possess the aforementioned limitations. This is namely because haplotype-based methods assess genetic similarity based on numbers of shared (i.e., intersecting) haplotypes as opposed to similarities in nucleotide composition observed in an MSA. For haplotype-based comparisons, choosing an appropriate distance statistic is fundamental, and several statistics are available to choose from. However, a comprehensive assessment of various available statistics for their ability to produce a robust haplotype-based phylogenetic reconstruction has not yet been performed. We evaluated seven distance statistics by applying them to extant MLST datasets from the gastrointestinal parasite Cyclospora cayetanensis and two species of pathogenic nematode of the genus Strongyloides. We compare the genetic relationships identified using each statistic to epidemiologic, geographic, and host metadata. We show that Barratt's heuristic definition of genetic distance was the most robust among the statistics evaluated. Consequently, it is proposed that Barratt's heuristic represents a useful approach for use in the context of challenging MLST datasets possessing features (i.e., high heterozygosity, partial genotypes, and indel or repeat-based polymorphisms) that confound or preclude the use of alignment-based methods.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: