Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 68 papers out of 68 papers

Human neocortical expansion involves glutamatergic neuron diversification.

  • Jim Berg‎ et al.
  • Nature‎
  • 2021‎

The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer's disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


Compulsive drug-taking is associated with habenula-frontal cortex connectivity.

  • Ying Duan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

As a critical node connecting the forebrain with the midbrain, the lateral habenula (LHb) processes negative feedback in response to aversive events and plays an essential role in value-based decision-making. Compulsive drug use, a hallmark of substance use disorder, is attributed to maladaptive decision-making regarding aversive drug-use-related events and has been associated with dysregulation of various frontal-midbrain circuits. To understand the contributions of frontal-habenula-midbrain circuits in the development of drug dependence, we employed a rat model of methamphetamine self-administration (SA) in the presence of concomitant footshock, which has been proposed to model compulsive drug-taking in humans. In this longitudinal study, functional MRI data were collected at pretraining baseline, after 20 d of long-access SA phase, and after 5 d of concomitant footshock coupled with SA (punishment phase). Individual differences in response to punishment were quantified by a "compulsivity index (CI)," defined as drug infusions at the end of punishment phase, normalized by those at the end of SA phase. Functional connectivity of LHb with the frontal cortices and substantia nigra (SN) after the punishment phase was positively correlated with the CI in rats that maintained drug SA despite receiving increasing-intensity footshock. In contrast, functional connectivity of the same circuits was negatively correlated with CI in rats that significantly reduced SA. These findings suggest that individual differences in compulsive drug-taking are reflected by alterations within frontal-LHb-SN circuits after experiencing the negative consequences from SA, suggesting these circuits may serve as unique biomarkers and potential therapeutic targets for individualized treatment of addiction.


Long-acting granulocyte colony-stimulating factor in primary prophylaxis of early infection in patients with newly diagnosed multiple myeloma.

  • Xinjing Ding‎ et al.
  • Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer‎
  • 2022‎

This study sought to compare the efficacy of prophylactic long-acting and standard granulocyte colony-stimulating factor (G-CSF) on febrile neutropenia, early infections, and treatment delay in patients with newly diagnosed multiple myeloma (MM) receiving the therapeutic regimen of bortezomib, lenalidomide, and dexamethasone (VRd).


AvNAC030, a NAC Domain Transcription Factor, Enhances Salt Stress Tolerance in Kiwifruit.

  • Ming Li‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Kiwifruit (Actinidia chinensis Planch) is suitable for neutral acid soil. However, soil salinization is increasing in kiwifruit production areas, which has adverse effects on the growth and development of plants, leading to declining yields and quality. Therefore, analyzing the salt tolerance regulation mechanism can provide a theoretical basis for the industrial application and germplasm improvement of kiwifruit. We identified 120 NAC members and divided them into 13 subfamilies according to phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis based on the conserved motifs, key amino acid residues in the NAC domain, expression patterns, and protein interaction network predictions and screened the candidate gene AvNAC030. In order to study its function, we adopted the method of heterologous expression in Arabidopsis. Compared with the control, the overexpression plants had higher osmotic adjustment ability and improved antioxidant defense mechanism. These results suggest that AvNAC030 plays a positive role in the salt tolerance regulation mechanism in kiwifruit.


Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells.

  • Nathan W Gouwens‎ et al.
  • Cell‎
  • 2020‎

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Association between Genotype, Presentation, and Outcome in Childhood Idiopathic and Hereditary Pulmonary Arterial Hypertension.

  • Zhuoyuan Xu‎ et al.
  • Journal of clinical medicine‎
  • 2022‎

Paediatric-onset idiopathic/hereditary pulmonary arterial hypertension (IPAH/HPAH) is partially linked to genetic factors that may also affect treatment response and outcome. The relation between clinical characteristics and pathogenicity of gene variants in childhood IPAH/HPAH is still not well understood.


Non-denatured yak type I collagen accelerates sunburned skin healing by stimulating and replenishing dermal collagen.

  • Caihong Fu‎ et al.
  • Biotechnology reports (Amsterdam, Netherlands)‎
  • 2023‎

Sunburn is one of the most common skin lesions caused by excessive UV exposure, and its incidence is highly correlated with the risks of skin cancer. A variety of drugs including corticosteroids and NSAIDs have been developed to treat acute sunburn, however, they have raised severe concerns such as poor healing efficacy and long recovery time. We have for the first time extracted non-denatured type I collagen from yak hide, which displays a canonical triple helical structure with melting temperature of 42.7 °C. The highly pure yak collagen type I (YCI) self-assembles to form well-ordered nanofibers with periodic d-bands. YCI is highly biocompatible, and it significantly promotes the proliferation and adhesion of HFF-1 cells. The sunburn healing effects of YCI has been investigated using acute skin injury mouse model. Histological analysis shows that 4 days' treatment of YCI has resulted in the recovery of sunburned mice skin to a healthy state, indicated by pronounced acceleration of epithelization and collagen deposition. The collagen volume fraction as well as the hydroxyproline (Hyp) content of YCI-treated sunburned skin have been found to be greatly increased, confirming the enhanced regeneration of collagen. YCI creams and dressings have also shown superior healing capacity of sunburn by remarkably shortening the recovery time. Notably, the denatured collagen-targeted staining results indicated a large quantity of denatured collagen in sunburned mice, which became substantially reduced after the YCI treatment. FITC-labeled YCI has been further found to penetrate into the dermis of sunburned mice. The highly biocompatible and bioactive non-denatured YCI provides an improved treatment of sunburn, indicating very promising applications of YCI in cosmetics and dermatology.


Atf4 regulates angiogenic differences between alveolar bone and long bone macrophages by regulating M1 polarization, based on single-cell RNA sequencing, RNA-seq and ATAC-seq analysis.

  • Lanxin Gu‎ et al.
  • Journal of translational medicine‎
  • 2023‎

In the repair of maxillofacial bone defects, autogenous craniofacial bone can often provide superior clinical results over long bone grafts. Most current studies have focused on the osteogenic differences between alveolar bone marrow (ABM) and long bone marrow (LBM), however, studies about the angiogenic differences between the two are currently lacking. We downloaded single-cell RNA sequencing (scRNA-seq) of mouse ABM and LBM respectively from the public database, and the data were processed by using Seurat package. CellphoneDB2 results showed that macrophages had the strongest interaction with mesenchymal stem cells (MSCs) and endothelial cells (ECs). ELISA results confirmed that ABM macrophages secreted a higher level of vascular endothelial growth factor A (Vegfa) compared to LBM macrophages, which further promoted angiogenesis of ECs and MSCs. Using SCENIC package, six key transcription factors (TFs) were identified to regulate the difference between ABM and LBM macrophages, and activating transcription factor 4 (Atf4) was confirmed to be more expressed in ABM macrophages by polymerase chain reaction (PCR) and western blot (WB), with predicted target genes including Vegfa. Besides, the result of scRNA-seq implied ABM macrophages more in M1 status than LBM macrophages, which was confirmed by the following experiments. From the results of another assay for transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq about M1 macrophages, Atf4 was also confirmed to regulate the M1 polarization. So, we suspected that Atf4 regulated the different expression of Vegfa between ABM and LBM macrophages by activating M1 polarization. After knocking down Atf4, the expression of M1 polarization markers and Vegfa were downregulated and vasculogenic differences were eliminated, which were subsequently reversed by the addition of LPS/IFN-γ. Our study might provide a new idea to improve the success rate of autologous bone grafting and treatment of oral diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: