Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 201 papers

Upregulation of microRNA miR-141-3p and its prospective targets in endometrial carcinoma: a comprehensive study.

  • Lin-Jie Yang‎ et al.
  • Bioengineered‎
  • 2021‎

The clinicopathological value of microRNA-141-3p (miR-141-3p) and its prospective target genes in endometrial carcinoma (EC) remains unclear. The present study determined the expression level of miR-141-3p in EC via quantitative real-time PCR (RT-qPCR). RT-qPCR showed a markedly higher expression level of miR-141-3p in EC tissues than in non-EC endometrium tissues (P < 0.0001). The microarray and miRNA-seq data revealed upregulation of miR-141-3p. Integrated analysis based on 675 cases of EC and 63 controls gave a standardized mean difference of 1.737, confirmed the upregulation of miR-141-3p. The Kaplan-Meier survival curve showed that a higher expression of miR-141-3p positively corelated with a poorer prognosis. Combining the predicted targets and downregulated genes in EC, we obtained 271 target genes for miR-141-3p in EC. Two potential targets, PPP1R12A and PPP1R12B, were downregulated at both the mRNA and protein levels. This study indicates that the overexpression of miR-141-3p may play an important part in the carcinogenesis of EC. The overexpression of miR-141-3p may be a risk factor for the prognosis of patients with EC.


Identification of a RNA-Seq based prognostic signature with five lncRNAs for lung squamous cell carcinoma.

  • Rui-Xue Tang‎ et al.
  • Oncotarget‎
  • 2017‎

Long non-coding RNAs (lncRNAs) expression profile signature for survival assessment in lung squamous cell carcinoma (LUSC) are largely inconsistent due to distinct detecting approaches and small sample size. Systematic and integrative investigation of RNA-Seq based data from The Cancer Genome Atlas (TCGA) herein was performed to determine candidate lncRNAs for prognosis evaluation of LUSC. A total of 60483 genes, including 7589 lncRNAs were assessed in a cohort including 478 LUSC cases with follow-up data. Firstly, 4225 differentially expressed lncRNAs were obtained via R packages. Next, univariate and multivariate Cox proportional hazards regression revealed that 41 lncRNAs were closely related to the survival of LUSC. Finally, lncRNA based prognosis index (PI) could predict overall survival of LUSC with high accuracy (AUC = 0.652, CI: 0.598, 0.705), PI = expCYP4F26P*βCYP4F26P+expRP11-108M12.3*βRP11-108M12.3+expRP11-38M8.1*βRP11-38M8.1+expRP11-54H7.4*βRP11-54H7.4+expZNF503-AS1*βZNF503-AS1. Furthermore, it was confirmed that the five-lncRNA signature could act as an independent prognostic indicator for LUSC (HR = 2.068, p < 0.001 with univariate analysis, HR = 1.928, p = 0.038 with multivariate). Besides, we constructed a weighted gene co-expression network analysis (WGCNA) of key lncRNA RP11-54H7.4 according to the p-value of related genes' weight. This study provides a RNA-Seq based prognostic signature with five lncRNAs for further clinical application to LUSC patients.


Identification of an Immune Score-Based Gene Panel with Prognostic Power for Oral Squamous Cell Carcinoma.

  • Su-Ning Huang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Oral squamous cell carcinoma (OSCC) is the sixth most prevalent cancer worldwide, with low 5-year survival rate. To identify novel prognostic markers for OSCC and determine the immune and stromal landscape of OSCC, a risk signature for OSCC patients was constructed in this study. MATERIAL AND METHODS Immune and stromal scores for OSCC samples from the Genomic Data Commons Data Portal were computed to delineate the tumor microenvironment landscape of oral cancer based on the Estimation of STromal and Immune cells in MAlignant Tumours using Expression data algorithm. An immune score-based risk signature was constructed by combining random forest and support vector machine methods. Correlation analysis of risk signature gene expression and immune cell infiltration was conducted, and the distinguishing power of individual signature genes was evaluated by analyzing receiver operating characteristics (ROC) curves. Differentially enriched pathways between high and low risk groups were investigated via gene set variation analysis. ROC curves were plotted for signature genes to examine their ability to distinguish the recurrence and survival status of OSCC patients from GSE84846. RESULTS An immune score-related risk signature composed of ARMH1, F2RL2, AC004687.1, COL6A5, AC008750.1, RAB19, CRLF2, GRIP2, and FAM162B performed well in the prognostic stratification of OSCC patients and could effectively distinguish their survival status. Lists of pathways, including cytokine-cytokine receptor interaction and cell adhesion molecules displayed remarkable differential enrichment between high and low risk OSCC patients. CONCLUSIONS An immune score-based risk signature constructed presently may be useful to decide appropriate treatment options for individual OSCC patients.


An autophagy-related gene expression signature for survival prediction in multiple cohorts of hepatocellular carcinoma patients.

  • Peng Lin‎ et al.
  • Oncotarget‎
  • 2018‎

Prognostic signatures have been proposed as clinical tools to estimate prognosis in hepatocellular carcinoma (HCC), which is the second most common contributor to cancer-related death at present globally. Autophagy-related genes play a dynamic and fundamental role in HCC, but knowledge of their utility as prognostic markers is limited. Here, we facilitated univariate and multivariate Cox proportional hazards regression analyses to reveal that 3 autophagy-related genes (BIRC5, FOXO1 and SQSTM1) were closely related to the survival of HCC. Then, we generated a prognosis index (PI) for predicting overall survival (OS) based on the three genes, which was an independent prognostic indicator for the OS of HCC (HR = 1.930, 95% CI: 1.200-3.104, P = 0.007). The PI showed moderate performance for predicting the survival of HCC patients and its efficacy was validated by data from three microarrays (GSE10143, GSE10186 and GSE17856). Furthermore, we deeply mined the integrated large-scale datasets from public microarrays and immunohistochemistry to validate the overexpression of BIRC5 and SQSTM1 while down-regulated FOXO1 expression in HCC. Bioinformatic analysis offered the hypothesis that proliferative signals in high-risk HCC patients were disturbing and thereby facilitated inferior clinical outcomes. Collectively, the prognostic signature we proposed is a promising biomarker for monitoring outcome of HCC. Nevertheless, prospective experimental studies are needed to validate the clinical utility.


Pekinenin E Inhibits the Growth of Hepatocellular Carcinoma by Promoting Endoplasmic Reticulum Stress Mediated Cell Death.

  • Lu Fan‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

Hepatocellular carcinoma (HCC) is a malignant primary liver cancer with poor prognosis. In the present study, we report that pekinenin E (PE), a casbane diterpenoid derived from the roots of Euphorbia pekinensis, has a strong antitumor activity against human HCC cells both in vitro and in vivo. PE suppressed the growth of human HCC cells Hep G2 and SMMC-7721. In addition, PE-mediated endoplasmic reticulum (ER) stress caused increasing expressions of C/EBP homologous protein (CHOP), leading to apoptosis in HCC cells both in vitro and in vivo. Inhibition of ER stress with CHOP small interfering RNA or 4-phenyl-butyric acid partially reversed PE-induced cell death. Furthermore, PE induced S cell cycle arrest, which could also be partially reversed by CHOP knockdown. In all, these findings suggest that PE causes ER stress-associated cell death and cell cycle arrest, and it may serve as a potent agent for curing human HCC.


An Encapsulation of Gene Signatures for Hepatocellular Carcinoma, MicroRNA-132 Predicted Target Genes and the Corresponding Overlaps.

  • Xin Zhang‎ et al.
  • PloS one‎
  • 2016‎

Previous studies have demonstrated that microRNA-132 plays a vital part in and is actively associated with several cancers, with its tumor-suppressive role in hepatocellular carcinoma confirmed. The current study employed multiple bioinformatics techniques to establish gene signatures for hepatocellular carcinoma, microRNA-132 predicted target genes and the corresponding overlaps.


Clinical value of miR-198-5p in lung squamous cell carcinoma assessed using microarray and RT-qPCR.

  • Yue-Ya Liang‎ et al.
  • World journal of surgical oncology‎
  • 2018‎

To examine the clinical value of miR-198-5p in lung squamous cell carcinoma (LUSC).


Lower expressed miR-198 and its potential targets in hepatocellular carcinoma: a clinicopathological and in silico study.

  • Wen-Ting Huang‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

To investigate the clinicopathological value and potential roles of microRNA-198 (miR-198) in hepatocellular carcinoma (HCC).


Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma.

  • Guihui Qin‎ et al.
  • Cancer letters‎
  • 2016‎

The efficiency of surgery in hepatocellular carcinoma (HCC) is limited due to metastasis and recurrence, but the molecular mechanisms are unclear. Here, we show that MMP-8 and TGF-β1 accumulate in highly invasive HCC cell lines and invasive HCC patient tissues. Upregulation of MMP-8 and TGF-β1 correlated with changes in cellular epithelial-mesenchymal transition (EMT) phenotypes and HCC migration and invasion. The expression of TGF-β1 was markedly restored by MMP-8 overexpression in TGF-β1-depleted HCC cells mainly via the activation of PI3K/Akt/Rac1 pathway. Similarly, the expression of MMP-8 was restored by TGF-β1 treatment in MMP-8-depleted HCC cells mainly through the activation of the same PI3K/Akt/Rac1 pathway. MMP-8 expression was significantly related to TGF-β1 expression in HCC patient tissues, and high expression of MMP-8 or TGF-β1 was significantly associated with TNM stage and HCC metastasis. Specifically, patients with high co-expression of MMP-8 and TGF-β1 had a shorter time-to-recurrence than those with low co-expression. Therefore, the reciprocal positive interplay between MMP-8 and TGF-β1 contributes to HCC invasion and metastasis by inducing EMT mainly through the PI3K/Akt/Rac1 pathway.


Identification and Validation of a Prognostic Prediction Model of m6A Regulator-Related LncRNAs in Hepatocellular Carcinoma.

  • Chen Jin‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

Hepatocellular carcinoma (HCC) is a highly invasive malignancy prone to recurrence, and patients with HCC have a low 5-year survival rate. Long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of HCC. N6-methyladenosine methylation (m6A) is the most common modification influencing cancer development. Here, we used the transcriptome of m6A regulators and lncRNAs, along with the complete corresponding clinical HCC patient information obtained from The Cancer Genome Atlas (TCGA), to explore the role of m6A regulator-related lncRNA (m6ARlnc) as a prognostic biomarker in patients with HCC. The prognostic m6ARlnc was selected using Pearson correlation and univariate Cox regression analyses. Moreover, three clusters were obtained via consensus clustering analysis and further investigated for differences in immune infiltration, immune microenvironment, and prognosis. Subsequently, nine m6ARlncs were identified with Lasso-Cox regression analysis to construct the prognostic signature m6A-9LPS for patients with HCC in the training cohort (n = 226). Based on m6A-9LPS, the risk score for each case was calculated. Patients were then divided into high- and low-risk subgroups based on the cutoff value set by the X-tile software. m6A-9LPS showed a strong prognosis prediction ability in the validation cohort (n = 116), the whole cohort (n = 342), and even clinicopathological stratified survival analysis. Combining the risk score and clinical characteristics, we established a nomogram for predicting the overall survival (OS) of patients. To further understand the mechanism underlying the m6A-9LPS-based classification of prognosis differences, KEGG and GO enrichment analyses, competitive endogenous RNA (ceRNA) network, chemotherapeutic agent sensibility, and immune checkpoint expression level were assessed. Taken together, m6A-9LPS could be used as a precise prediction model for the prognosis of patients with HCC, which will help in individualized treatment of HCC.


Development and Validation of a Radiomic Nomogram for Predicting the Prognosis of Kidney Renal Clear Cell Carcinoma.

  • Ruizhi Gao‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The present study aims to comprehensively investigate the prognostic value of a radiomic nomogram that integrates contrast-enhanced computed tomography (CECT) radiomic signature and clinicopathological parameters in kidney renal clear cell carcinoma (KIRC).


CEP55 promotes the proliferation, migration and invasion of esophageal squamous cell carcinoma via the PI3K/Akt pathway.

  • Yang Jia‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

Centrosomal protein 55 (CEP55) is an important prognostic biomarker that plays an essential role in the proliferation, migration and invasion of multiple tumors. We aimed to investigate the prognostic value of CEP55 in pN0 esophageal squamous cell carcinoma (ESCC) and explore its biological function in ESCC cells.


The expression characteristics and clinical significance of ACP6, a potential target of nitidine chloride, in hepatocellular carcinoma.

  • Li Gao‎ et al.
  • BMC cancer‎
  • 2022‎

Acid phosphatase type 6 (ACP6) is a mitochondrial lipid phosphate phosphatase that played a role in regulating lipid metabolism and there is still blank in the clinico-pathological significance and functional roles of ACP6 in human cancers. No investigations have been conducted on ACP6 in hepatocellular carcinoma (HCC) up to date.


Somatostatin analogues in advanced hepatocellular carcinoma: an updated systematic review and meta-analysis of randomized controlled trials.

  • Xi-Qing Ji‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2011‎

The role of somatostatin analogues in advanced hepatocellular carcinoma (HCC) remains controversial. The aim of this study was to examine the effect of octreotide on the survival of patients with advanced HCC.


Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma.

  • Fang-Hui Ren‎ et al.
  • BMC cancer‎
  • 2018‎

Currently, some studies have demonstrated that miR-34a could serve as a suppressor of several cancers including hepatocellular carcinoma (HCC). Previously, we discovered that miR-34a was downregulated in HCC and involved in the tumorigenesis and progression of HCC; however, the mechanism remains unclear. The purpose of this study was to estimate the expression of miR-34a in HCC by applying the microarray profiles and analyzing the predicted targets of miR-34a and their related biological pathways of HCC.


Epithelial mesenchymal transition is required for acquisition of anoikis resistance and metastatic potential in adenoid cystic carcinoma.

  • Jun Jia‎ et al.
  • PloS one‎
  • 2012‎

Human adenoid cystic carcinoma (ACC) is characterized by diffused invasion of the tumor into adjacent organs and early distant metastasis. Anoikis resistance and epithelial mesenchymal transition (EMT) are considered prerequisites for cancer cells to metastasize. Exploring the relationship between these processes and their underlying mechanism of action is a promising way to better understand ACC tumors. We initially established anoikis-resistant sublines of ACC cells; the variant cells revealed a mesenchymal phenotype through Slug-mediated EMT-like transformation and displayed enhanced metastatic potential both in vitro and in vivo. Suppression of EMT by knockdown of Slug significantly impaired anoikis resistance, migration, and invasion of the variant cells. With overexpression of Slug and Twist, we determined that induction of EMT in normal ACC cells could prevent anoikis, albeit partially. These findings strongly suggest that EMT is indispensable in anoikis resistance, at least in ACC cells. Furthermore, we found that the EGFR/PI3K/Akt pathway acts as the common regulator for EMT-like transformation and anoikis resistance, as confirmed by their specific inhibitors. Gefitinib and LY294003 restored the sensibilities of anoikis-resistant cells to anoikis and simultaneously impaired their metastatic potential. In addition, the results from our in vivo model of metastasis suggest that pretreatment with gefitinib promotes mouse survival by alleviating pulmonary metastasis. Most importantly, immunohistochemistry of human ACC specimens showed a correlation between the overexpression of Slug and EGFR staining. This study has demonstrated that Slug-mediated EMT-like transformation is required by human ACC cells to achieve anoikis resistance and their metastatic potential. Targeting the EGFR/PI3K/Akt pathway holds potential as a preventive strategy against distant metastasis of ACC.


The Indication of Poor Prognosis by High Expression of ENO1 in Squamous Cell Carcinoma of the Lung.

  • Wan-Ying Huang‎ et al.
  • Journal of oncology‎
  • 2021‎

The purpose of this study is to investigate the significance of alpha-enolase (ENO1) expression in squamous cell carcinoma of the lung (LUSC), its prognostic value, and prospective molecular mechanism. Using multiplatforms data, including in-house immunohistochemistry, in-house real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), in-house microarray, and public high-throughput data, the expression significance and prognostic role of ENO1 in LUSC tissues were analyzed comprehensively. With the combination of all eligible cases, compared with 941 non-LUSC lung tissues, ENO1 was significantly overexpressed in 1163 cases of LUSC (standardized mean difference (SMD) = 1.23, 95% confidence interval (CI) = 0.76-1.70, P < 0.001). ENO1 also displayed a great ability to differentiate LUSC tissues from non-LUSC lung tissues (AUC = 0.8705) with the comprehensive sensitivity being 0.88 [0.83-0.92], and comprehensive specificity being 0.89 [0.84-0.94]). Moreover, in 1860 cases of LUSC with survival information, patients with higher expression of ENO1 had poorer prognosis (hazard ratio (HR) = 1.20, 95% CI = 1.01-1.43, P = 0.043). ENO1 and its related genes mainly participated in the pathways of cell division and proliferation. In conclusion, the upregulation of ENO1 could affect the carcinogenesis and unfavorable outcome of LUSC.


Clinical significance of microRNA-449a in hepatocellular carcinoma with microarray data mining together with initial bioinformatics analysis.

  • Xia Yang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Increasing evidence has demonstrated that microRNA (miR)-449a expression is reduced in various types of tumors and that it serves as a tumor suppressor. However, the molecular mechanism of miR-449a in hepatocellular carcinoma (HCC) has not been thoroughly elucidated and is disputed. Therefore, the aim of the present work was to systematically review the current literature and to utilize the public Gene Expression Omnibus database to determine the role of miR-449a and its significance in HCC. A total of eight original papers and seven microarrays were included in the present study. Based on the evidence, miR-449a was reduced in HCC. miR-449a is likely involved in various signaling pathways and is targeted to multiple mRNA as part of its function in HCC. In addition, a preliminary bioinformatic analysis was conducted for miR-449a to investigate the novel potential pathways that miR-449a may participate in regarding HCC.


The Molecular Landscape and Biological Alterations Induced by PRAS40-Knockout in Head and Neck Squamous Cell Carcinoma.

  • Gang Chen‎ et al.
  • Frontiers in oncology‎
  • 2020‎

PRAS40 (Prolin-rich Akt substrate of 40 kDa) is a critical protein, which directly connects PI3K/Akt and mTORC1 pathway. It plays an indispensable role in the development of various diseases. However, the relationship between PRAS40 and head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, our study indicated that high expression of PRAS40 mRNA is a favorable prognostic factor in HNSCC patients by analyzing 498 clinical and mRNA data. Moreover, we confirmed that CRISPR/Cas9 induced PRAS40-knockout would promote colony formation, cell migration, and invasion in several HNSCC cell lines. RNA-seq was employed to investigate the further possible mechanisms involving the above regulations by PRAS40 in HNSCC cells. The molecular landscape contributed by 253 differentially expressed mRNA after PRAS40-knockout was enriched in TGF-beta, PI3K-Akt, P53, mTOR, NF-κB signaling pathway. Partial molecular alternations within these pathways were validated by qPCR or Western blotting. Besides, we found that high expression of PRAS40 in HNSC patients would present more CD8+ T and T follicular helper cells, but less Th17 cells than the patients with low expression of PRAS40. The altered molecular pathways and tumor-infiltrating immune cells might associate with the mechanism of PRAS40 being a suppressor in HNSCC cells, which would provide a potential prognostic predictor and therapeutic target in HNSCC patients.


High throughput circRNA sequencing analysis reveals novel insights into the mechanism of nitidine chloride against hepatocellular carcinoma.

  • Dan-Dan Xiong‎ et al.
  • Cell death & disease‎
  • 2019‎

Nitidine chloride (NC) has been demonstrated to have an anticancer effect in hepatocellular carcinoma (HCC). However, the mechanism of action of NC against HCC remains largely unclear. In this study, three pairs of NC-treated and NC-untreated HCC xenograft tumour tissues were collected for circRNA sequencing analysis. In total, 297 circRNAs were differently expressed between the two groups, with 188 upregulated and 109 downregulated, among which hsa_circ_0088364 and hsa_circ_0090049 were validated by real-time quantitative polymerase chain reaction. The in vitro experiments showed that the two circRNAs inhibited the malignant biological behaviour of HCC, suggesting that they may play important roles in the development of HCC. To elucidate whether the two circRNAs function as "miRNA sponges" in HCC, we identified circRNA-miRNA and miRNA-mRNA interactions by using the CircInteractome and miRwalk, respectively. Subsequently, 857 miRNA-associated differently expressed genes in HCC were selected for weighted gene co-expression network analysis. Module Eigengene turquoise with 423 genes was found to be significantly related to the survival time, pathology grade and TNM stage of HCC patients. Gene functional enrichment analysis showed that the 423 genes mainly functioned in DNA replication- and cell cycle-related biological processes and signalling cascades. Eighteen hubgenes (SMARCD1, CBX1, HCFC1, RBM12B, RCC2, NUP205, ECT2, PRIM2, RBM28, COPS7B, PRRC2A, GPR107, ANKRD52, TUBA1B, ATXN7L3, FUS, MCM8 and RACGAP1) associated with clinical outcomes of HCC patients were then identified. These findings showed that the crosstalk between hsa_circ_0088364 and hsa_circ_0090049 and their competing mRNAs may play important roles in HCC, providing interesting clues into the potential of circRNAs as therapeutic targets of NC in HCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: