Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 104 papers

Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice.

  • Rodanthi Lyraki‎ et al.
  • Disease models & mechanisms‎
  • 2023‎

Female bias is highly prevalent in conditions such as adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this study, we show that overexpression of the secreted WNT agonist R-spondin 1 (RSPO1) leads to ectopic activation of WNT/β-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. Although female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of the WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/β-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.


Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma.

  • María Monteagudo‎ et al.
  • Cancers‎
  • 2021‎

One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.


Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors.

  • Juliane März‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet.


Innovative multidimensional models in a high-throughput-format for different cell types of endocrine origin.

  • Stefan Bornstein‎ et al.
  • Cell death & disease‎
  • 2022‎

The adrenal gland provides an important function by integrating neuronal, immune, vascular, metabolic and endocrine signals under a common organ capsule. It is the central organ of the stress response system and has been implicated in numerous stress-related disorders. While for other diseases, regeneration of healthy organ tissue has been aimed at such approaches are lacking for endocrine diseases - with the exception of type-I-diabetes. Moreover, adrenal tumor formation is very common, however, appropriate high-throughput applications reflecting the high heterogeneity and furthermore relevant 3D-structures in vitro are still widely lacking. Recently, we have initiated the development of standardized multidimensional models of a variety of endocrine cell/tissue sources in a new multiwell-format. Firstly, we confirmed common applicability for pancreatic pseudo-islets. Next, we translated applicability for spheroid establishment to adrenocortical cell lines as well as patient material to establish spheroids from malignant, but also benign adrenal tumors. We aimed furthermore at the development of bovine derived healthy adrenal organoids and were able to establish steroidogenic active organoids containing both, cells of cortical and medullary origin. Overall, we hope to open new avenues for basic research, endocrine cancer and adrenal tissue-replacement-therapies as we demonstrate potential for innovative mechanistic insights and personalized medicine in endocrine (tumor)-biology.


GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy.

  • Anna Mukha‎ et al.
  • Theranostics‎
  • 2021‎

Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.


Regulation of thrombomodulin expression in prostate cancer cells.

  • Mario Menschikowski‎ et al.
  • Cancer letters‎
  • 2012‎

In carcinomas the expression of thrombomodulin (TM) is inversely correlated with tumour progression and metastasis. In the present study a decreased TM expression in human prostate cancer cell lines, LNCaP, DU-145, and PC-3, in relation to normal prostate epithelial cells (PrEC) is shown. Sequencing and methylation-specific high resolution melting (MS-HRM) analyses of bisulphite-modified genomic DNA indicates a high degree of methylation in DU-145 cells and lesser degrees in PC-3 and LNCaP cells, whereas in PrEC the TM promoter is unmethylated. The expression of TM is negatively regulated by NF-κB- and GSK3-β-dependent signalling pathways and positively regulated by retinoic acid and transcription factor Sp1 in PrEC, LNCaP and PC-3 cells, but not in DU-145 cells. However, exposure of DU-145 cells to the demethylating agent, 5-aza-2'deoxycytidine, restores the TM expression and its control by retinoic acid, NF-κB- and GSK3-β-dependent signalling. In conclusion, the study establishes that in prostate cancer cell lines relative to PrEC the TM is down-regulated and that the TM promoter is hypermethylated, which seems to be responsible for the down-regulation and failed regulation of TM expression in DU-145 cells.


Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma.

  • Ines Leinhäuser‎ et al.
  • Oncotarget‎
  • 2015‎

BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy.


Different expression of catecholamine transporters in phaeochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2.

  • Thanh-Truc Huynh‎ et al.
  • European journal of endocrinology‎
  • 2005‎

Phaeochromocytomas in patients with multiple endocrine neoplasia type 2 (MEN 2) produce adrenaline, whereas those with von Hippel-Lindau (VHL) syndrome do not. This study assessed whether these distinctions relate to differences in expression of the transporters responsible for uptake and storage of catecholamines - the noradrenaline transporter and the vesicular monoamine transporters (VMAT 1 and VMAT 2).


Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways.

  • Mario Menschikowski‎ et al.
  • Experimental cell research‎
  • 2009‎

The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), but not interferon-gamma and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1beta and TNF-alpha correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-l-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1beta and TNF-alpha, and downstream by MAP kinase signaling pathways and metalloproteinases.


Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism.

  • Wiebke Arlt‎ et al.
  • JCI insight‎
  • 2017‎

Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess.


The Catalytic Subunit β of PKA Affects Energy Balance and Catecholaminergic Activity.

  • Edra London‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

The protein kinase A (PKA) signaling system mediates the effects of numerous hormones, neurotransmitters, and other molecules to regulate metabolism, cardiac function, and more. PKA defects may lead to diverse phenotypes that largely depend on the unique expression profile of the affected subunit. Deletion of the Prkarcb gene, which codes for PKA catalytic subunit β (Cβ), protects against diet-induced obesity (DIO), yet the mechanism for this phenotype remains unclear. We hypothesized that metabolic rate would be increased in Cβ knockout (KO) mice, which could explain DIO resistance. Male, but not female, CβKO mice had increased energy expenditure, and female but not male CβKO mice had increased subcutaneous temperature and increased locomotor activity compared with wild-type (WT) littermates. Urinary norepinephrine (NE) and normetanephrine were elevated in female CβKO mice. CβKO mice had increased heart rate (HR); blocking central NE release normalized HR to that of untreated WT mice. Basal and stimulated PKA enzymatic activities were unchanged in adipose tissue and heart and varied in different brain regions, suggesting that Prkacb deletion may mediate signaling changes in specific brain nuclei and may be less important in the peripheral regulation of PKA expression and activity. This is a demonstration of a distinct effect of the PKA Cβ catalytic subunit on catecholamines and sympathetic nerve signaling. The data provide an unexpected explanation for the metabolic phenotype of CβKO mice. Finally, the sexual dimorphism is consistent with mouse models of other PKA subunits and adds to the importance of these findings regarding the PKA system in human metabolism.


Synergistic Highly Potent Targeted Drug Combinations in Different Pheochromocytoma Models Including Human Tumor Cultures.

  • Maria Fankhauser‎ et al.
  • Endocrinology‎
  • 2019‎

There are no officially approved therapies for metastatic pheochromocytomas apart from ultratrace 131I-metaiodbenzylguanidine therapy, which is approved only in the United States. We have, therefore, investigated the antitumor potential of molecular-targeted approaches in murine pheochromocytoma cell lines [monocyte chemoattractant protein (MPC)/monocyte chemoattractant protein/3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], immortalized mouse chromaffin Sdhb-/- cells, three-dimensional pheochromocytoma tumor models (MPC/MTT spheroids), and human pheochromocytoma primary cultures. We identified the specific phosphatidylinositol-3-kinase α inhibitor BYL719 and the mammalian target of rapamycin inhibitor everolimus as the most effective combination in all models. Single treatment with clinically relevant doses of BYL719 and everolimus significantly decreased MPC/MTT and Sdhb-/- cell viability. A targeted combination of both inhibitors synergistically reduced MPC and Sdhb-/- cell viability and showed an additive effect on MTT cells. In MPC/MTT spheroids, treatment with clinically relevant doses of BYL719 alone or in combination with everolimus was highly effective, leading to a significant shrinkage or even a complete collapse of the spheroids. We confirmed the synergism of clinically relevant doses of BYL719 plus everolimus in human pheochromocytoma primary cultures of individual patient tumors with BYL719 attenuating everolimus-induced AKT activation. We have thus established a method to assess molecular-targeted therapies in human pheochromocytoma cultures and identified a highly effective combination therapy. Our data pave the way to customized combination therapy to target individual patient tumors.


Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

  • Matthias J Betz‎ et al.
  • PloS one‎
  • 2012‎

Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets.


Potent antitumor activity of the novel HSP90 inhibitors AUY922 and HSP990 in neuroendocrine carcinoid cells.

  • Kathrin Zitzmann‎ et al.
  • International journal of oncology‎
  • 2013‎

The heat shock protein (HSP) 90 chaperone machine involved in numerous oncogenic signaling pathways is overexpressed in cancer cells and is currently being evaluated for anticancer therapy. Neuroendocrine tumors (NETs) of the gastroenteropancreatic (GEP) system comprise a heterogeneous group of tumors with increasing incidence and poor prognosis. Here, we report the antiproliferative effects of the HSP90 inhibitors AUY922 and HSP990 in neuroendocrine tumor cells. Treatment of human pancreatic BON1, bronchopulmonary NCI-H727 and midgut carcinoid GOT1 neuroendocrine tumor cells with increasing concentrations of AUY922 and HSP990 dose-dependently suppressed cell viability. Significant effects on neuroendocrine cell viability were observed with inhibitor concentrations as low as 5 nM. Inhibition of cell viability was associated with the induction of apoptosis as demonstrated by an increase in sub-G1 events and PARP cleavage. HSP90 inhibition was associated with decreased neuroendocrine ErbB and IGF-I receptor expression, decreased Erk and Akt phospho-rylation and the induction of HSP70 expression. These findings provide evidence that targeted inhibition of upregulated HSP90 activity could be useful for the treatment of aggressive neuroendocrine tumors resistant to conventional therapy.


Mutation of the Cell Cycle Regulator p27kip1 Drives Pseudohypoxic Pheochromocytoma Development.

  • Hermine Mohr‎ et al.
  • Cancers‎
  • 2021‎

Pseudohypoxic tumors activate pro-oncogenic pathways typically associated with severe hypoxia even when sufficient oxygen is present, leading to highly aggressive tumors. Prime examples are pseudohypoxic pheochromocytomas and paragangliomas (p-PPGLs), neuroendendocrine tumors currently lacking effective therapy. Previous attempts to generate mouse models for p-PPGLs all failed. Here, we describe that the rat MENX line, carrying a Cdkn1b (p27) frameshift-mutation, spontaneously develops pseudohypoxic pheochromocytoma (p-PCC).


Calcineurin regulates aldosterone production via dephosphorylation of NFATC4.

  • Mesut Berber‎ et al.
  • JCI insight‎
  • 2023‎

The mineralocorticoid aldosterone, secreted by the adrenal zona glomerulosa (ZG), is critical for life, maintaining ion homeostasis and blood pressure. Therapeutic inhibition of protein phosphatase 3 (calcineurin, Cn) results in inappropriately low plasma aldosterone levels despite concomitant hyperkalemia and hyperreninemia. We tested the hypothesis that Cn participates in the signal transduction pathway regulating aldosterone synthesis. Inhibition of Cn with tacrolimus abolished the potassium-stimulated (K+-stimulated) expression of aldosterone synthase, encoded by CYP11B2, in the NCI-H295R human adrenocortical cell line as well as ex vivo in mouse and human adrenal tissue. ZG-specific deletion of the regulatory Cn subunit CnB1 diminished Cyp11b2 expression in vivo and disrupted K+-mediated aldosterone synthesis. Phosphoproteomics analysis identified nuclear factor of activated T cells, cytoplasmic 4 (NFATC4), as a target for Cn-mediated dephosphorylation. Deletion of NFATC4 impaired K+-dependent stimulation of CYP11B2 expression and aldosterone production while expression of a constitutively active form of NFATC4 increased expression of CYP11B2 in NCI-H295R cells. Chromatin immunoprecipitation revealed NFATC4 directly regulated CYP11B2 expression. Thus, Cn controls aldosterone production via the Cn/NFATC4 pathway. Inhibition of Cn/NFATC4 signaling may explain low plasma aldosterone levels and hyperkalemia in patients treated with tacrolimus, and the Cn/NFATC4 pathway may provide novel molecular targets to treat primary aldosteronism.


Treatment of Pheochromocytoma Cells with Recurrent Cycles of Hypoxia: A New Pseudohypoxic In Vitro Model.

  • Jana Helm‎ et al.
  • Cells‎
  • 2022‎

Continuous activation of hypoxia pathways in pheochromocytomas and paragangliomas (PPGLs) is associated with higher disease aggressiveness, for which effective treatment strategies are still missing. Most of the commonly used in vitro models lack characteristics of these pseudohypoxic tumors, including elevated expression of hypoxia-inducible factor (HIF) 2α. To address this shortcoming, we investigated whether recurrent hypoxia cycles lead to continuous activation of hypoxia pathways under normoxic conditions and whether this pseudohypoxia is associated with increased cellular aggressiveness. Rat pheochromocytoma cells (PC12) were incubated under hypoxia for 24 h every 3-4 days, up to 20 hypoxia-reoxygenation cycles, resulting in PC12 Z20 cells. PC12 Z20 control cells were obtained by synchronous cultivation under normoxia. RNA sequencing revealed upregulation of HIF2α in PC12 Z20 cells and a pseudohypoxic gene signature that overlapped with the gene signature of pseudohypoxic PPGLs. PC12 Z20 cells showed a higher growth rate, and the migration and adhesion capacity were significantly increased compared with control cells. Changes in global methylation, together with the pseudohypoxic conditions, may be responsible for the increased aggressiveness of this new model. The established sub-cell line with characteristics of pseudohypoxic PPGLs represent a complementary model for further investigations, for example, with regard to new therapeutic approaches.


Identification of glucocorticoid-related molecular signature by whole blood methylome analysis.

  • Roberta Armignacco‎ et al.
  • European journal of endocrinology‎
  • 2022‎

Cushing's syndrome represents a state of excessive glucocorticoids related to glucocorticoid treatments or to endogenous hypercortisolism. Cushing's syndrome is associated with high morbidity, with significant inter-individual variability. Likewise, adrenal insufficiency is a life-threatening condition of cortisol deprivation. Currently, hormone assays contribute to identify Cushing's syndrome or adrenal insufficiency. However, no biomarker directly quantifies the biological glucocorticoid action. The aim of this study was to identify such markers.


Circulating microRNA Expression in Cushing's Syndrome.

  • Sharmilee Vetrivel‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Cushing's syndrome (CS) is a rare disease of endogenous hypercortisolism associated with high morbidity and mortality. Diagnosis and classification of CS is still challenging.


The Vault Complex Is Significantly Involved in Therapeutic Responsiveness of Endocrine Tumors and Linked to Autophagy under Chemotherapeutic Conditions.

  • Stefan Bornstein‎ et al.
  • Cancers‎
  • 2023‎

Cancers display dynamic interactions with their complex microenvironments that influence tumor growth, invasiveness, and immune evasion, thereby also influencing potential resistance to therapeutic treatments. The tumor microenvironment (TME) includes cells of the immune system, the extracellular matrix, blood vessels, and other cell types, such as fibroblasts or adipocytes. Various cell types forming this TME secrete exosomes, and molecules thereby released into the TME have been shown to be important mediators of cellular communication and interplay. Specific stressors in the TME, such as hypoxia, starvation, inflammation, and damage, can furthermore induce autophagy, a fundamental cellular process that degrades and recycles molecules and subcellular components, and recently it has been demonstrated that the small non-coding vault RNA1-1 plays a role as a regulator of autophagy and the coordinated lysosomal expression and regulation (CLEAR) network. Here, we demonstrate for the first time that intra-tumoral damage following effective therapeutic treatment is linked to specific intracellular synthesis and subsequent exosomal release of vault RNAs in endocrine tumors in vitro and in vivo. While we observed a subsequent upregulation of autophagic markers under classical chemotherapeutic conditions, a downregulation of autophagy could be detected under conditions strongly involving inflammatory cascades.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: