Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,148 papers

B7-H3 combats apoptosis induced by chemotherapy by delivering signals to pancreatic cancer cells.

  • Dongbao Li‎ et al.
  • Oncotarget‎
  • 2017‎

This study aimed to investigate the role of B7-H3 in chemotherapy resistance of pancreatic cancer cells and discover the potential signal transduction pathway and molecular targets involved.


Ultrathin metal-organic framework membrane production by gel-vapour deposition.

  • Wanbin Li‎ et al.
  • Nature communications‎
  • 2017‎

Ultrathin, molecular sieving membranes composed of microporous materials offer great potential to realize high permeances and selectivities in separation applications, but strategies for their production have remained a challenge. Here we show a route for the scalable production of nanometre-thick metal-organic framework (MOF) molecular sieving membranes, specifically via gel-vapour deposition, which combines sol-gel coating with vapour deposition for solvent-/modification-free and precursor-/time-saving synthesis. The uniform MOF membranes thus prepared have controllable thicknesses, down to ~17 nm, and show one to three orders of magnitude higher gas permeances than those of conventional membranes, up to 215.4 × 10-7 mol m-2 s-1 Pa-1 for H2, and H2/C3H8, CO2/C3H8 and C3H6/C3H8 selectivities of as high as 3,400, 1,030 and 70, respectively. We further demonstrate the in situ scale-up processing of a MOF membrane module (30 polymeric hollow fibres with membrane area of 340 cm2) without deterioration in selectivity.MOF-based membranes have shown great promise in separation applications, but producing thin membranes that allow for high fluxes remains challenging. Here, the authors use a gel-vapour deposition strategy to fabricate composite membranes with less than 20 nm thicknesses and high gas permeances and selectivities.


Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo.

  • Haipeng Liu‎ et al.
  • Scientific reports‎
  • 2017‎

TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide of α1(I) collagen (Trimer-Tag) to the C-terminus of mature human TRAIL leads to a disulfide bond-linked homotrimer which can be expressed at high levels as a secreted protein from CHO cells. The resulting TRAIL-Trimer not only retains similar bioactivity and receptor binding kinetics as native TRAIL in vitro which are 4-5 orders of magnitude superior to that of dimeric TRAIL-Fc, but also manifests more favorable pharmacokinetic and antitumor pharmacodynamic profiles in vivo than that of native TRAIL. Taken together, this work provides direct evidence for the in vivo antitumor efficacy of TRAIL being proportional to systemic drug exposure and suggests that the previous clinical failures may have been due to rapid systemic clearance of native TRAIL and poor apoptosis-inducing potency of dimeric agonist mAbs despite their long serum half-lives.


Generation of melanocytes from induced pluripotent stem cells.

  • Ruifeng Yang‎ et al.
  • The Journal of investigative dermatology‎
  • 2011‎

Epidermal melanocytes have an important role in protecting skin from UV rays, and are implicated in a variety of skin diseases. Here, we developed an efficient method for differentiating induced pluripotent stem cells (iPSCs) into melanocytes. We first generated iPSCs from adult mouse tail-tip fibroblasts (TTFs) using retroviral vectors or virus-free piggyBac transposon vectors carrying murine Sox2, Oct3/4, c-Myc, and Klf4. The TTF-derived iPSC clones exhibited similar morphology and growth properties as mouse embryonic stem (ES) cells. The iPSCs expressed ES cell markers, displayed characteristic epigenetic changes, and formed teratomas with all three germ layers. The iPSCs were used to generate embryonic bodies and were then successfully differentiated into melanocytes by treatment with growth factors. The iPSC-derived melanocytes expressed characteristic melanocyte markers and produced melanin pigment. Electron microscopy showed that the melanocytes contained mature melanosomes. We manipulated the conditions used to differentiate iPSCs to melanocytes and discovered that Wnt3a is not required for mouse melanocyte differentiation. This report shows that melanocytes can be readily generated from iPSCs, providing a powerful resource for the in vitro study of melanocyte developmental biology and diseases. By inducing iPSCs without viruses, the possibility of integration mutagenesis is alleviated, and these iPSCs are more compatible for cell replacement therapies.


Control costs, enhance quality, and increase revenue in three top general public hospitals in Beijing, China.

  • Lue-Ping Zhao‎ et al.
  • PloS one‎
  • 2013‎

With market-oriented economic and health-care reform, public hospitals in China have received unprecedented pressures from governmental regulations, public opinions, and financial demands. To adapt the changing environment and keep pace of modernizing healthcare delivery system, public hospitals in China are expanding clinical services and improving delivery efficiency, while controlling costs. Recent experiences are valuable lessons for guiding future healthcare reform. Here we carefully study three teaching hospitals, to exemplify their experiences during this period.


Inhibition of pathological retinal neovascularization by semaphorin 3A.

  • Wenzhen Yu‎ et al.
  • Molecular vision‎
  • 2013‎

Pathological retinal angiogenesis is a major cause of vision loss. Semaphorin 3A (Sema3A), a chemorepellent guidance protein, plays crucial roles in neural and vascular patterning. To identify its role in retinal neovascularization, we investigated its antiangiogenic effects.


Expression and significance of hypoxia-inducible factor-1α and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells.

  • Jin Xie‎ et al.
  • Oncology letters‎
  • 2013‎

The present study aimed to evaluate the expression of hypoxia-inducible factor-1α (HIF-1α) and MDR1/P-glycoprotein (P-gp) in human laryngeal squamous cell carcinoma (LSCC) tissues, and also to investigate the regulation of MDR1 gene expression by HIF-1α in Hep-2 cells under hypoxic conditions. The expression of HIF-1α and MDR1/P-gp in human LSCC tissues was examined using immunohistochemistry. The HIF-1α and MDR1 gene expression in the Hep-2 cells was detected using real-time quantitative reverse transcription (QRT)-PCR and western blot analysis under normoxic and hypoxic conditions. In hypoxia, HIF-1α expression was inhibited by RNA interference. HIF-1α and MDR1/P-gp expression was high in the LSCC tissues and was associated with the clinical stage and lymph node metastasis (P<0.05). HIF-1α expression was positively correlated with MDR1/P-gp expression (P<0.01). In the Hep-2 cells, HIF-1α and MDR1/P-gp expression significantly increased in response to hypoxia. The inhibition of HIF-1α expression synergistically downregulated the expression of the MDR1 gene in hypoxic Hep-2 cells. HIF-1α expression is positively correlated with MDR1/P-gp expression in LSCC, and the two proteins may be able to serve as potential biomarkers for predicting the malignant progression and metastasis of LSCC. HIF-1α may be critical for the upregulation of MDR1 gene expression induced by hypoxia in Hep-2 cells.


Collagen morphology and texture analysis: from statistics to classification.

  • Leila B Mostaço-Guidolin‎ et al.
  • Scientific reports‎
  • 2013‎

In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage.


A peptide that binds specifically to the β-amyloid of Alzheimer's disease: selection and assessment of anti-β-amyloid neurotoxic effects.

  • Fang Wang‎ et al.
  • PloS one‎
  • 2011‎

The accumulation of the amyloid-β peptide (Aβ) into amyloid plaques, an essential event in Alzheimer's disease (AD) pathogenesis, has caused researchers to seek compounds that physiologically bind Aβ and modulate its aggregation and neurotoxicity. In order to develop new Aβ-specific peptides for AD, a randomized 12-mer peptide library with Aβ₁₋₁₀ as the target was used to identify peptides in the present study. After three rounds of selection, specific phages were screened, and their binding affinities to Aβ₁₋₁₀ were found to be highly specific. Finally, a special peptide was synthesized according to the sequences of the selected phages. In addition, the effects of the special peptide on Aβ aggregation and Aβ-mediated neurotoxicity in vitro and in vivo were assessed. The results show that the special peptide not only inhibited the aggregation of Aβ into plaques, but it also alleviated Aβ-induced PC12 cell viability and apoptosis at appropriate concentrations as assessed by the cell counting kit-8 assay and propidium iodide staining. Moreover, the special peptide exhibited a protective effect against Aβ-induced learning and memory deficits in rats, as determined by the Morris water maze task. In conclusion, we selected a peptide that specifically binds Aβ₁₋₁₀ and can modulate Aβ aggregation and Aβ-induced neuronal damage. This opens up possibilities for the development of a novel therapeutic approach for the treatment of AD.


Brain natriuretic peptide for prediction of mortality in patients with sepsis: a systematic review and meta-analysis.

  • Fei Wang‎ et al.
  • Critical care (London, England)‎
  • 2012‎

Early identification of septic patients at high risk of dying remains a challenge. The prognostic role of brain natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NT-proBNP) in septic patients remains controversial. The purpose of this systematic review and meta-analysis was to investigate the value of elevated BNP or NT-proBNP in predicting mortality in septic patients.


Local delivery of a viral vector mitigates neutralization by antiviral antibodies and results in efficient transduction of rabbit liver.

  • Bradley L Hodges‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2005‎

Antiviral antibodies within the human population remain a barrier to the effective clinical use of viral gene transfer vectors. We have asked whether local, balloon catheter-mediated delivery of a viral vector to the rabbit liver using a hepatic vein might mitigate the neutralizing effects of antiviral antibodies. We have compared directly the ability of adenovirus (Ad2) encoding nuclear-localized beta-galactosidase to infect the rabbit liver after local and systemic delivery in both the presence and the absence of defined anti-Ad2 antibody titers. In naive rabbits, local delivery resulted in higher beta-galactosidase expression compared to systemic delivery. In the presence of passively administered anti-Ad2 antibodies, local delivery resulted in expression levels that were comparable to those obtained in naive rabbits by systemic delivery. Local delivery also resulted in the majority of expression originating from hepatocytes, even in passively immunized animals, a result that could not be duplicated using the systemic approach. Since systemic delivery of adenovirus in naive animal models results in transgene expression levels often regarded as therapeutic, these results predict that local hepatic vein delivery of a viral vector is a clinically practical approach to mitigate neutralizing antiviral antibodies and generate therapeutic levels of transgene expression.


Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells.

  • Hong Liu‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Loss of tissue polarity and increased proliferation are the characteristic alterations of the breast tumor phenotype. To investigate these processes, we used a three-dimensional (3D) culture system in which malignant human breast cells can be reverted to a normal phenotype by exposure to inhibitors of phosphatidylinositol 3-kinase (PI3K). Using this assay, we find that Akt and Rac1 act as downstream effectors of PI3K and function as control points of cellular proliferation and tissue polarity, respectively. Our results also demonstrate that the PI3K signaling pathway is an integral component of the overall signaling network induced by growth in 3D, as reversion affected by inhibition of PI3K signaling also down-modulates the endogenous levels of beta1 integrin and epidermal growth factor receptor, the upstream modulators of PI3K, and up-regulates PTEN, the antagonist of PI3K. These findings reveal key events of the PI3K pathway that play distinct roles to maintain tissue polarity and that when disrupted are instrumental in the malignant phenotype.


Discovery of novel inhibitors of Streptococcus pneumoniae based on the virtual screening with the homology-modeled structure of histidine kinase (VicK).

  • Nan Li‎ et al.
  • BMC microbiology‎
  • 2009‎

Due to the widespread abusage of antibiotics, antibiotic-resistance in Streptococcus pneumoniae (S. pneumoniae) has been increasing quickly in recent years, and it is obviously urgent to develop new types of antibiotics. Two-component systems (TCSs) are the major signal transduction pathways in bacteria and have emerged as potential targets for antibacterial drugs. Among the 13 pairs of TCSs proteins presenting in S. pneumoniae, VicR/K is the unique one essential for bacterium growth, and block agents to which, if can be found, may be developed as effective antibiotics against S. pneumoniae infection.


Selection of reliable reference genes for gene expression studies in peach using real-time PCR.

  • Zhaoguo Tong‎ et al.
  • BMC molecular biology‎
  • 2009‎

RT-qPCR is a preferred method for rapid and reliable quantification of gene expression studies. Appropriate application of RT-qPCR in such studies requires the use of reference gene(s) as an internal control to normalize mRNA levels between different samples for an exact comparison of gene expression level. However, recent studies have shown that no single reference gene is universal for all experiments. Thus, the identification of high quality reference gene(s) is of paramount importance for the interpretation of data generated by RT-qPCR. Only a few studies on reference genes have been done in plants and none in peach (Prunus persica L. Batsch). Therefore, the present study was conducted to identify suitable reference gene(s) for normalization of gene expression in peach.


Comparative profiling of microRNA expression between neural stem cells and motor neurons in embryonic spinal cord in rat.

  • Hongen Wei‎ et al.
  • International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience‎
  • 2010‎

Neural stem cells' transplantation has been proposed as a future therapy for spinal cord injury. The challenge is how to make proportionally more neural stem cells differentiate into spinal motor neurons. Recent reports reveal that microRNAs play an important role in regulating stem cell self-renewal and differentiation. The aim of this study was to compare the profiling of microRNA expression between neural stem cells and motor neurons and to find candidate targets that direct differentiation of neural stem cells into motor neurons. We performed a parallel isolation and purification of motor neurons and neural stem cells from the same rat embryonic spinal cord sample. With the high-throughput TaqMan low-density array platform, 44 differentially expressed microRNAs were identified (22 specially expressed microRNAs in motor neurons and neural stem cells, respectively). Using bioinformatic methods, clustering, transcriptional regulation and target genes of differential microRNAs were analyzed. Furthermore, miR-126 specially expressed in cultured motor neurons identified by TaqMan low-density array was significantly elevated in choline acetyltransferase-positive neurons differentiated from the neural stem cells. These findings suggest that specially expressed microRNAs may contribute to the directed differentiation of neural stem cells into motor neurons and are potential targets for therapeutic interventions following spinal cord injury.


Serum miRNAs miR-23a, 206, and 499 as Potential Biomarkers for Skeletal Muscle Atrophy.

  • Fei Wang‎ et al.
  • BioMed research international‎
  • 2017‎

Muscle biopsy has long been expected to be replaced by noninvasive biomarkers with diagnostic value and prognostic applications for muscle atrophy. Growing evidence suggests that circulating microRNAs (miRNAs) could act as biomarkers for numerous pathophysiological statuses. In the present study, our results showed that the serum levels of six muscle-specific miRNAs (miR-1/23a/133/206/208b/499) were all elevated in unloading induced mice. The medium levels of these six muscle-specific miRNAs were all elevated in starvation induced atrophic C2C12 myotubes. Moreover, the serum levels of miR-23a/206/499 were induced in participants after 45 days of head-down bed rest (HDBR). The levels of miR-23a/206/499 were positively correlated with the ratio of soleus volume loss in HDBR participants, indicating that they might represent the process of muscle loss. In conclusion, our results demonstrated that circulating miRNAs could serve as useful biochemical and molecular indicators for muscle atrophy diagnosis and disease progression.


Increased risk of venous thromboembolism associated with polymyositis and dermatomyositis: a meta-analysis.

  • Yanqing Li‎ et al.
  • Therapeutics and clinical risk management‎
  • 2018‎

Polymyositis and dermatomyositis (PM/DM) have been implicated in the development of venous thromboembolism (VTE). Previous studies investigating the association between PM/DM and VTE risk had yielded inconsistent findings. The aim of this study was to precisely estimate this association by meta-analysis of all available publications.


Silencing of c-Ski augments TGF-b1-induced epithelial-mesenchymal transition in cardiomyocyte H9C2 cells.

  • Jia Ling‎ et al.
  • Cardiology journal‎
  • 2019‎

The shRNA lentiviral vector was constructed to silence c-Ski expression in cardiac mus- cle cells, with the aim of exploring the role of c-Ski in transforming growth factor b1 (TGF-b1)-induced epithelial-mesenchymal transitions (EMT) in H9C2 cells.


High KIF2A expression promotes proliferation, migration and predicts poor prognosis in lung adenocarcinoma.

  • Tian Xie‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

The Kinesin family member 2a (KIF2A), that belongs to the Kinesin-13 microtubule depolymerases, plays an important role in cancer cell proliferation, migration and apoptosis in various types of cancer such as gastric cancer, breast cancer, and squamous cell carcinoma of the oral tongue, but, its role and mechanism in lung adenocarcinoma (LUAD) is largely unknown. The present study reported that KIF2A was overexpressed in LUAD tissues as compared with adjacent normal tissues. KIF2A was closely correlated with TNM stage and lymph node metastasis (P < 0.01), whereas, no similar relationships between KIF2A and age, gender, smoking and differentiation. Multivariate analysis indicated that hyperexpression of KIF2A in LUAD was an independent risk factor for worse overall survival in LUAD patients (HR: 3.135, 95%CI: 1.331-7.112, p < 0.05). In vitro, KIF2A knockdown markedly reduced LUAD cell A549 migration and could regulate epithelial-mesenchymal transition. Furthermore, silencing KIF2A inhibited cell proliferation and induced apoptosis in lung adenocarcinoma(LUAD) cells. In conclusion, KIF2A may serve as a valuable prognostic indicator and promising therapeutic target of LUAD.


Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis.

  • Alejandro M Sevillano‎ et al.
  • PLoS pathogens‎
  • 2018‎

Very solid evidence suggests that the core of full length PrPSc is a 4-rung β-solenoid, and that individual PrPSc subunits stack to form amyloid fibers. We recently used limited proteolysis to map the β-strands and connecting loops that make up the PrPSc solenoid. Using high resolution SDS-PAGE followed by epitope analysis, and mass spectrometry, we identified positions ~116/118, 133-134, 141, 152-153, 162, 169 and 179 (murine numbering) as Proteinase K (PK) cleavage sites in PrPSc. Such sites likely define loops and/or borders of β-strands, helping us to predict the threading of the β-solenoid. We have now extended this approach to recombinant PrPSc (recPrPSc). The term recPrPSc refers to bona fide recombinant prions prepared by PMCA, exhibiting infectivity with attack rates of ~100%. Limited proteolysis of mouse and bank vole recPrPSc species yielded N-terminally truncated PK-resistant fragments similar to those seen in brain-derived PrPSc, albeit with varying relative yields. Along with these fragments, doubly N- and C-terminally truncated fragments, in particular ~89/97-152, were detected in some recPrPSc preparations; similar fragments are characteristic of atypical strains of brain-derived PrPSc. Our results suggest a shared architecture of recPrPSc and brain PrPSc prions. The observed differences, in particular the distinct yields of specific PK-resistant fragments, are likely due to differences in threading which result in the specific biochemical characteristics of recPrPSc. Furthermore, recombinant PrPSc offers exciting opportunities for structural studies unachievable with brain-derived PrPSc.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: